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Chapter 2: How Bitcoin Achieves Decentralization 
 

In this chapter, we will discuss decentralization in Bitcoin. In the first chapter we looked at the crypto 

basics that underlie Bitcoin and we ended with a simple currency that we called ScroogeCoin. 

ScroogeCoin achieves a lot of what we want in a ledger-based cryptocurrency, but it has one glaring 

problem — it relies upon the centralized authority called Scrooge. We ended with the question of 

how to decentralize, or de-Scrooge-ify, this currency, and answering that question will be the focus of 

this chapter. 

 

As you read through this chapter, take note that the mechanism through which Bitcoin achieves 

decentralization is not purely technical, but it’s a combination of technical methods and clever 

incentive engineering. At the end of this chapter you should have a really good appreciation for how 

this decentralization happens, and more generally how Bitcoin works and why it is secure. 

 

2.1 Centralization vs. Decentralization 
 

Decentralization is an important concept that is not unique to Bitcoin. The notion of competing 

paradigms of centralization versus decentralization arises in a variety of different digital technologies. 

In order to best understand how it plays out in Bitcoin, it is useful to understand the central conflict — 

the tension between these two paradigms — in a variety of other contexts. 

 

On the one hand we have the Internet, a famously decentralized system that has historically 

competed with and prevailed against “walled-garden” alternatives like AOL’s and CompuServe’s 

information services. Then there’s email, which at its core is a decentralized system based on the 

Simple Mail Transfer Protocol (SMTP), an open standard. While it does have competition from 

proprietary messaging systems like Facebook or LinkedIn mail, email has managed to remain the 

default for person-to-person communication online. In the case of instant messaging and text 

messaging, we have a hybrid model that can’t be categorically described as centralized or 

decentralized. Finally there’s social networking: despite numerous concerted efforts by hobbyists, 

developers and entrepreneurs to create alternatives to the dominant centralized model, centralized 

systems like Facebook and LinkedIn still dominate this space. In fact, this conflict long predates the 

digital era and we see a similar struggle between the two models in the history of telephony, radio, 

television, and film. 

 

Decentralization is not all or nothing; almost no system is purely decentralized or purely centralized. 

For example, email is fundamentally a decentralized system based on a standardized protocol, SMTP, 

and anyone who wishes can operate an email server of their own. Yet, what has happened in the 

market is that a small number of centralized webmail providers have become dominant. Similarly, 

while the Bitcoin protocol is decentralized, services like Bitcoin exchanges, where you can convert 



Bitcoin into other currencies, and wallet software, or software that allows people to manage their 

bitcoins may be centralized or decentralized to varying degrees.  

 

With this in mind, let’s break down the question of how the Bitcoin protocol achieves decentralization 

into five more specific questions: 

 

1. Who maintains the ledger of transactions? 

2. Who has authority over which transactions are valid? 

3. Who creates new bitcoins? 

4. Who determines how the rules of the system change? 

5. How do bitcoins acquire exchange value? 

 

The first three questions reflect the technical details of the Bitcoin protocol, and it is these questions 

that will be the focus of this chapter.  

 

Different aspects of Bitcoin fall on different points on the centralization/decentralization spectrum. 

The peer-to-peer network is close to purely decentralized since anybody can run a Bitcoin node and 

there’s a fairly low barrier to entry. You can go online and easily download a Bitcoin client and run a 

node on your laptop or your PC. Currently there are several thousand such nodes. Bitcoin mining, 
which we’ll study later in this chapter, is technically also open to anyone, but it requires a very high 

capital cost. Because of this there has been a high degree of centralization, or a concentration of 

power, in the Bitcoin mining ecosystem. Many in the Bitcoin community see this as quite undesirable. 

A third aspect is updates to the software that Bitcoin nodes run, and this has a bearing on how and 

when the rules of the system change. One can imagine that there are numerous interoperable 

implementations of the protocol, as with email. But in practice, most nodes run the reference 

implementation, and its developers are trusted by the community and have a lot of power. 

 

2.2 Distributed consensus 
 

We’ve discussed, in a generic manner, centralization and decentralization. Let’s now examine 

decentralization in Bitcoin at a more technical level. A key term that will come up throughout this 

discussion is consensus, and specifically, distributed consensus. The key technical problem to solve in 

building a distributed e-cash system is achieving distributed consensus. Intuitively, you can think of 

our goal as decentralizing ScroogeCoin, the hypothetical currency that we saw in the first chapter.  

 

Distributed consensus has various applications, and it has been studied for decades in computer 

science. The traditional motivating application is reliability in distributed systems. Imagine you’re in 

charge of the backend for a large social networking company like Facebook. Systems of this sort 

typically have thousands or even millions of servers, which together form a massive distributed 

database that records all of the actions that happen in the system. Each piece of information must be 

recorded on several different nodes in this backend, and the nodes must be in sync about the overall 



state of the system. 

 

The implications of having a distributed consensus protocol reach far beyond this traditional 

application. If we had such a protocol, we could use it to build a massive, distributed key-value store, 

that maps arbitrary keys, or names, to arbitrary values. A distributed key-value store, in turn, would 

enable many applications. For example, we could use it to build a distributive domain name system, 

which is simply a mapping between human understandable domain names to IP addresses. We could 

build a public key directory, which is a mapping between email addresses (or some other form of 

real-world identity) to public keys.  

 

That’s the intuition of what distributed consensus is, but it is useful to provide a technical definition as 

this will help us determine whether or not a given protocol meets the requirements. 

 

Distributed consensus protocol. There are n nodes that each have an input value. Some of these 

nodes are faulty or malicious. A distributed consensus protocol has the following two properties: 

● It must terminate with all honest nodes in agreement on the value 

● The value must have been generated by an honest node 

 

What does this mean in the context of Bitcoin? To understand how distributed consensus could work 

in Bitcoin, remember that Bitcoin is a peer-to-peer system. When Alice wants to pay Bob, what she 

actually does is broadcast a transaction to all of the Bitcoin nodes that comprise the peer-to-peer 

network. See Figure 2.1. 

 

 

Figure 2.1 Broadcasting a transaction In order to pay Bob, Alice broadcasts the transaction to the 

entire Bitcoin peer-to-peer network. 

 

Incidentally, you may have noticed that Alice broadcasts the transaction to all the Bitcoin peer-to-peer 

nodes, but Bob’s computer is nowhere in this picture. It’s of course possible that Bob is running one of 

the nodes in the peer-to-peer network. In fact, if he wants to be notified that this transaction did in 

fact happen and that he got paid, running a node might be a good idea. Nevertheless, there is no 

requirement that Bob be listening on the network; running a node is not necessary for Bob to receive 

the funds. The bitcoins will be his whether or not he’s operating a node on the network.  

 

What exactly is it that the nodes might want to reach consensus on in the Bitcoin network? Given that 

a variety of users are broadcasting these transactions to the network, the nodes must agree on 



exactly which transactions were broadcast and the order in which these transactions happened. This 

will result in a single, global ledger for the system. Recall that in ScroogeCoin, for optimization, we put 

transactions into blocks. Similarly, in Bitcoin, we do consensus on a block-by-block basis.  

 

So at any given point, all the nodes in the peer-to-peer network have a ledger consisting of a 

sequence of blocks, each containing a list of transactions, that they’ve reached consensus on. 

Additionally, each node has a pool of outstanding transactions that it has heard about but have not 

yet been included on the block chain. For these transactions, consensus has not yet happened, and so 

by definition, each node might have a slightly different version of the outstanding transaction pool. In 

practice, this occurs because the peer-to-peer network is not perfect, so some nodes may have heard 

about a transaction that other nodes have not heard about. 

 

How exactly do nodes come to consensus on a block? One way to do this: at regular intervals, say 

every 10 minutes, every node in the system proposes its own outstanding transaction pool to be the 

next block. Then the nodes execute some consensus protocol, where each node’s input is its own 

proposed block. Now, some nodes may be malicious and put invalid transactions into their blocks, but 

we might assume that other nodes will be honest. If the consensus protocol succeeds, a valid block 

will be selected as the output. Even if the selected block was proposed by only one node, it’s a valid 

output as long as the block is valid. Now there may be some valid outstanding transaction that did not 

get included in the block, but this is not a problem. If some transaction somehow didn’t make it into 

this particular block, it could just wait and get into the next block.  

 

The approach in the previous paragraph has some similarities to how Bitcoin works, but it’s not quite 

how it works. There are a number of technical problems with this approach. Firstly, consensus in 

general is a hard problem since nodes might crash or be outright malicious. Secondly, and specifically 

in the Bitcoin context, the network is highly imperfect. It’s a peer-to-peer system, and not all pairs of 

nodes are connected to each other. There could be faults in the network because of poor Internet 

connectivity for example, and thus running a consensus protocol in which all nodes must participate is 

not really possible. Finally, there’s a lot of latency in the system because it’s distributed all over the 

Internet.  

 

Sidebar: The Bitcoin protocol must reach consensus in the face of two types of obstacles: 

imperfections in the network, such as latency and nodes crashing, as well as deliberate attempts by 

some nodes to subvert the process. 

 

One particular consequence of this high latency is that there is no notion of global time. What this 

means is that not all nodes can agree to a common ordering of events simply based on observing 

timestamps. So the consensus protocol cannot contain instructions of the form, “The node that sent 

the first message in step 1 must do X in step 2.” This simply will not work because not all nodes will 

agree on which message was sent first in the step 1 of the protocol.  

 

Impossibility results. The lack of global time heavily constrains the set of algorithms that can be used 

in the consensus protocols. In fact, because of these constraints, much of the literature on distributed 



consensus is somewhat pessimistic, and many impossibility results have been proven. One very well 

known impossibility result concerns the Byzantine Generals Problem. In this classic problem, the 

Byzantine army is separated into divisions, each commanded by a general. The generals communicate 

by messenger in order to devise a joint plan of action. Some generals may be traitors and may 

intentionally try to subvert the process so that the loyal generals cannot arrive at a unified plan. The 

goal of this problem is for all of the loyal generals to arrive at the same plan without the traitorous 

generals being able to cause them to adopt a bad plan. It has been proven that this is impossible to 

achieve if one-third or more of the generals are traitors. 

 

A much more subtle impossibility result, known for the names of the authors who first proved it, is 

called the Fischer-Lynch-Paterson impossibility result. Under some conditions, which include the 

nodes acting in a deterministic manner, they proved that consensus is impossible with even a single 

faulty process.  

 

Despite these impossibility results, there are some consensus protocols in the literature. One of the 

better known among these protocols is Paxos. Paxos makes certain compromises.  On the one hand, it 

never produces an inconsistent result. On the other hand, it accepts the trade-off that under certain 

conditions, albeit rare ones, the protocol can get stuck and fail to make any progress.  

 

Breaking traditional assumptions. But there’s good news: these impossibility results were proven in a 

very specific model. They were intended to study distributed databases, and this model doesn’t carry 

over very well to the Bitcoin setting because Bitcoin violates many of the assumptions built into the 

models. In a way, the results tell us more about the model than they do about the problem of 

distributed consensus. 

 

Ironically, with the current state of research, consensus in Bitcoin works better in practice than in 

theory. That is, we observe consensus working, but have not developed the theory to fully explain 

why it works. But developing such a theory is important as it can help us predict unforeseen attacks 

and problems, and only when we have a strong theoretical understanding of how Bitcoin consensus 

works will we have strong guarantees Bitcoin’s security and stability.  

 

What are the assumptions in traditional models for consensus that Bitcoin violates? First, it introduces 

the idea of incentives, which is novel for a distributed consensus protocol. This is only possible in 

Bitcoin because it is a currency and therefore has a natural mechanism to incentivize participants to 

act honestly. So Bitcoin doesn’t quite solve the distributed consensus problem in a general sense, but 

it solves it in the specific context of a currency system.  

 

Second, Bitcoin embraces the notion of randomness. As we will see in the next two sections, Bitcoin’s 

consensus algorithm relies heavily on randomization. Also, it does away with the notion of a specific 

starting point and ending point for consensus. Instead, consensus happens over a long period of time, 

about an hour in the practical system. But even at the end of that time, nodes can’t be certain that 

any particular transaction or a block has made it into the ledger. Instead, as time goes on, the 

probability that your view of any block will match the eventual consensus view increases, and the 



probability that the views will diverge goes down exponentially. These differences in the model are 

key to how Bitcoin gets around the traditional impossibility results for distributed consensus 

protocols. 

 

2.3 Consensus without identity: using a block chain 
 

In this section we’ll study the technical details of Bitcoin’s consensus algorithm. Recall that Bitcoin 

nodes do not have persistent, long-term identities. This is another difference from traditional 

distributed consensus algorithms. One reason for this lack of identities is that in a peer-to-peer 

system, there is no central authority to assign identities to participants and verify that they’re not 

creating new nodes at will. The technical term for this is a Sybil attack. Sybils are just copies of nodes 

that a malicious adversary can create to look like there are a lot of different participants, when in fact 

all those pseudo-participants are really controlled by the same adversary. The other reason is that 

pseudonymity is inherently a goal of Bitcoin. Even if it were possible or easy to establish identities for 

all nodes or all participants, we wouldn’t necessarily want to do that. Although Bitcoin doesn’t give 

strong anonymity guarantees in that the different transactions that one makes can often be linked 

together, it does have the property that nobody is forced to reveal their real-life identity, like their 

name or IP address, in order to participate. And that’s an important property and a central feature of 

Bitcoin’s design. 

 

If nodes did have identities, the design would be easier. For starters, identities would allow us to put 

in the protocol instructions of the form, “Now the node with the lowest numerical ID should take 

some step.” Without identities, the set of possible instructions is more constrained. But a much more 

serious reason for nodes to have identities is for security. If nodes were identified and it weren’t trivial 

to create new node identities, then we could make assumptions on the number of nodes that are 

malicious, and we could derive security properties out of that. For both of these reasons, the lack of 

identities introduces difficulties for the consensus protocol in Bitcoin.  

 

We can compensate for the lack of identities by making a weaker assumption. Suppose there is 

somehow an ability to pick a random node in the system. A good motivating analogy for this is a 

lottery or a raffle, or any number of real-life systems where it’s hard to track people, give them 

identities and verify those identities. What we do in those contexts is to give out tokens or tickets or 

something similar. That enables us to later pick a random token ID, and call upon the owner of that ID. 

So for the moment, take a leap of faith and assume that it is possible to pick a random node from the 

Bitcoin network in this manner. Further assume, for the moment, that this token generation and 

distribution algorithm is sufficiently smart so that if the adversary is going to try to create a lot of Sybil 

nodes, all of those Sybils together will get only one token. This means the adversary is not able to 

multiply his power by creating new nodes. If you think this is a lot to assume, don’t worry. Later in this 

chapter, we’ll remove these assumptions and show in detail how properties equivalent to these are 

realized in Bitcoin. 

 



Implicit Consensus. This assumption of random node selection makes possible something called 

implicit consensus. There are multiple rounds in our protocol, each corresponding to a different block 

in the block chain. In each round, a random node is somehow selected, and this node gets to propose 

the next block in the chain. There is no consensus algorithm for selecting the block, and no voting of 

any kind. The chosen node unilaterally proposes what the next block in the block chain will be. But 

what if that node is malicious? Well, there is a process for handling that, but it is an implicit one. 

Other nodes will implicitly accept or reject that block by choosing whether or not to build on top of it. 

If they accept that block, they will signal their acceptance by extending the block chain including the 

accepted block. By contrast, if they reject that block, they will extend the chain by ignoring that block, 

and building on top of whichever is the previous block that they accepted. Recall that each block 

contains a hash of the block that it extends. This is the technical mechanism that allows nodes to 

signal which block it is that they are extending.  

 

Bitcoin consensus algorithm (simplified) 

 

This algorithm is simplified in that it assumes the ability to select a random node in a manner that is 

not vulnerable to Sybil attacks. 

 

1. New transactions are broadcast to all nodes 

2. Each node collects new transactions into a block 

3. In each round a random node gets to broadcast its block 

4. Other nodes accept the block only if all transactions in it are valid (unspent, valid 
signatures) 

5. Nodes express their acceptance of the block by including its hash in the next block they 
create 

 

 

Let’s now try to understand why this consensus algorithm works. To do this, let’s consider how a 

malicious adversary — who we’ll call Alice — may be able to subvert this process. 

 

Stealing Bitcoins. Can Alice simply steal bitcoins belonging to another user at an address she doesn’t 

control? No. Even if it is Alice’s turn to propose the next block in the chain, she cannot steal other 

users’ bitcoins. Doing so would require Alice to create a valid transaction that spends that coin. This 

would require Alice to forge the owners’ signatures which she cannot do if a secure digital signature 

scheme is used. So as long as the underlying cryptography is solid, she’s not able to simply steal 

bitcoins. 

 

Denial of service attack. Let’s consider another attack. Say Alice really dislikes some other user Bob. 

Alice can then decide that she will not include any transactions originating from Bob’s address in any 

block that she proposes to get onto the block chain. In other words, she’s denying service to Bob. 

While this is a valid attack that Alice can try to mount, luckily it’s nothing more than a minor 



annoyance. If Bob’s transaction doesn’t make it into the next block that Alice proposes, he will just 

wait until an honest node gets the chance to propose a block and then his transaction will get into 

that block. So that’s not really a good attack either. 

 

Double-spend attack. Alice may try to launch a double-spend attack. To understand how that works, 

let’s assume that Alice is a customer of some online merchant or website run by Bob, who provides 

some online service in exchange for payment in bitcoins. Let’s say Bob’s service allows the download 

of some software. So here’s how a double-spend attack might work. Alice adds an item to her 

shopping cart on Bob’s website and the server requests payment. Then Alice creates a Bitcoin 

transaction from her address to Bob’s and broadcasts it to the network. Let’s say that some honest 

node creates the next block, and includes this transaction in that block. So there is now a block that 

was created by an honest node that contains a transaction that represents a payment from Alice to 

the merchant Bob. 

 

Recall that a transaction is a data structure that contains Alice’s signature, an instruction to pay to 

Bob’s public key, and a hash. This hash represents a pointer to a previous transaction output that Alice 

received and is now spending. That pointer must reference a transaction that was included in some 

previous block in the consensus chain. 

 

Note, by the way, that there are two different types of hash pointers here that can easily be confused. 

Blocks include a hash pointer to the previous block that they’re extending. Transactions include one or 

more hash pointers to previous transaction outputs that are being redeemed. 

 

Let’s return to how Alice can launch a double spend attack. The latest block was generated by an 

honest node and includes a transaction in which Alice pays Bob for the software download. Upon 

seeing this transaction included in the block chain, Bob concludes that Alice has paid him and allows 

Alice to download the software. Suppose the next random node that is selected in the next round 

happens to be controlled by Alice. Now since Alice gets to propose the next block, she could propose 

a block that ignores the block that contains the payment to Bob and instead contains a pointer to the 

previous block. Furthermore, in the block that she proposes, Alice includes a transaction that transfers 

the very coins that she was sending to Bob to a different address that she herself controls. This is a 

classic double-spend pattern. Since the two transactions spend the same coins, only one of them can 

be included in the block chain. If Alice succeeds in including the payment to her own address in the 

block chain, then the transaction in which she pays Bob is useless as it can never be included later in 

the block chain. 

 



 

Figure 2.1 A double spend attempt. Alice creates two transactions: one in which she sends Bob 

Bitcoins, and a second in which she double spends those Bitcoins by sending them to a different 

address that she controls. As they spend the same Bitcoins, only one of these transactions can be 

included in the block chain. The arrows are pointers from one block to the previous block that it 

extends including a hash of that previous block within its own contents. CA is used to denote a coin 

owned by Alice. 

 

And how do we know if this double spend attempt is going to succeed or not? Well, that depends on 

which block will ultimately end up on the long-term consensus chain — the one with the Alice → Bob 

transaction or the one with the Alice → Alice transaction. What determines which block will be 

included? Honest nodes follow the policy of extending the longest valid branch, so which branch will 

they extend? There is no right answer! At this point, the two branches are the same length — they 

only differ in the last block and both of these blocks are valid. The node that chooses the next block 

then may decide to build upon either one of them, and this choice will largely determine whether or 

not the double-spend succeeds. 

 

A subtle point: from a moral point of view, there is a clear difference between the block containing 

the transaction that pays Bob and the block containing the transaction in which Alice double spends 

those coins to her own address. But this distinction is only based on our knowledge of the story that 

Alice first paid Bob and then attempted to double spend. From a technological point of view, 

however, these two transactions are completely identical and both blocks are equally valid. The nodes 

that are looking at this really have no way to tell which is the morally legitimate transaction.  

 

In practice, nodes often follow a heuristic of extending the block that they first heard about on the 

peer-to-peer network. But it’s not a solid rule. And in any case, because of network latency, it could 

easily be that the block that a node first heard about is actually the one that was created second. So 

there is at least some chance that the next node that gets to propose a block will extend the block 

containing the double spend. Alice could further try to increase the likelihood of this happening by 

bribing the next node to do so. If the next node does build on the double-spend block for whatever 

reason, then this chain will now be longer than the one that includes the transaction to Bob. At this 



point, the next honest node is much more likely to continue to build on this chain since it is longer. 

This process will continue, and it will become increasingly likely that the block containing the 

double-spend will be part of the long-term consensus chain. The block containing the transaction to 

Bob, on the other hand, gets completely ignored by the network, and this is now called an orphan 

block.  
 

Let’s now reconsider this whole situation from Bob-the-merchant’s point of view. Understanding how 

Bob can protect himself from this double-spending attack is a key part of understanding Bitcoin 

security. When Alice broadcasts the transaction that represents her payment to Bob, Bob is listening 

on the network and hears about this transaction even before the next block is created. If Bob was 

even more foolhardy than we previously described, he can complete the checkout process on the 

website and allow Alice to download the software right at that moment. That’s called a 

zero-confirmation transaction. This leads to an even more basic double spend attack than the one 

described before. Previously, for the double-spend attack to occur, we had to assume that a malicious 

actor controls the node that proposes the next block. But if Bob allows Alice to download the 

software before the transaction receives even a single confirmation on the block chain, then Alice can 

immediately broadcast a double-spend transaction, and an honest node may include it in the next 

block instead of the transaction that pays Bob. 

 

Figure 2.2 Bob the Merchant’s view. This is what Alice’s double-spend attempt looks like from Bob 

the merchant’s viewpoint. In order to protect himself from this attack, Bob should wait until the 

transaction with which Alice pays him is included in the block chain and has several confirmations. 

 

On the other hand, a cautious merchant would not release the software to Alice even after the 

transaction was included in one block, and would continue to wait. If Bob sees that Alice successfully 

launches a double-spend attack, he realizes that the block containing Alice’s payment to him has been 

orphaned. He should abandon the transaction and not let Alice download the software. Instead, if it 

happens that despite the double-spend attempt, the next several nodes build on the block with the 

Alice → Bob transaction, then Bob gains confidence that this transaction will be on the long-term 

consensus chain.  

 



In general, the more confirmations a transaction gets, the higher the probability that it is going to end 

up on the long-term consensus chain. Recall that honest nodes’ behavior is always to extend the 

longest valid branch that they see. The chance that the shorter branch with the double spend will 

catch up to the longer branch becomes increasingly tiny as it grows longer than any other branch. This 

is especially true if only a minority of the nodes are malicious — for a shorter branch to catch up, 

several malicious nodes would have to be picked in close succession. 

 

In fact, the double-spend probability decreases exponentially with the number of confirmations. So, if 

the transaction that you’re interested in has received k confirmations, then the probability that a 

double-spend transaction will end up on the long-term consensus chain goes down exponentially as a 

function of k. The most common heuristic that’s used in the Bitcoin ecosystem is to wait for six 

confirmations. There is nothing really special about the number six. It’s just a good tradeoff between 

the amount of time you have to wait and your guarantee that the transaction you’re interested in 

ends up on the consensus block chain. 

 

To recap, protection against invalid transactions is entirely cryptographic. But it is enforced by 

consensus, which means that if a node does attempt to include a cryptographically invalid transaction, 

then the only reason that transaction won’t end up in the long-term consensus chain is because a 

majority of the nodes are honest and won’t include an invalid transaction in the block chain. On the 

other hand, protection against double-spending is purely by consensus. Cryptography has nothing to 

say about this, and two transactions that represent a double-spend attempt are both valid from a 

cryptographic perspective. But it’s the consensus that determines which one will end up on the 

long-term consensus chain. And finally, you’re never 100 percent sure that a transaction you’re 

interested in is on the consensus branch. But, this exponential probability guarantee is rather good. 

After about six transactions, there’s virtually no chance that you’re going to go wrong. 

 

2.4 Incentives and proof of work 
 

In the previous section, we got a basic look at Bitcoin’s consensus algorithm and a good intuition for 

why we believe that it’s secure. But recall from the beginning of the chapter that Bitcoin’s 

decentralization is partly a technical mechanism and partly clever incentive engineering. So far we’ve 

mostly looked at the technical mechanism. Now let’s talk about the incentive engineering that 

happens in Bitcoin.  

 

We asked you to take a leap of faith earlier in assuming that we’re able to pick a random node and, 

perhaps more problematically, that at least 50 percent of the time, this process will pick an honest 

node. This assumption of honesty is particularly problematic if there are financial incentives for 

participants to subvert the process, in which case we can’t really assume that a node will be honest. 

The question then becomes: can we give nodes an incentive for behaving honestly?  

 

Consider again the double-spend attempt after one confirmation (Figure 2.2). Can we penalize, 



somehow, the node that created the block with the double-spend transaction? Well, not really. As we 

mentioned earlier, it’s hard to know which is the morally legitimate transaction. But even if we did, 

it’s still hard to punish nodes since they don’t have identities. So instead, let’s flip the question around 

and ask, can we reward each of the nodes that created the blocks that did end up on the long-term 

consensus chain? Well, again, since those nodes don’t reveal their real-world identities, we can’t quite 

mail them cash to their home addresses. If only there were some sort of digital currency that we could 

use instead... you can probably see where this is going. We’re going to use bitcoins to incentivize the 

nodes that created these blocks.  

 

Let’s pause for a moment. Everything that we’ve described so far is just an abstract algorithm for 

achieving distributed consensus and is not specific to the application. Now we’re going to break out of 

that model, and we’re going to use the fact that the application we’re building through this 

distributed consensus process is in fact a currency. Specifically, we’re going to incentivize nodes to 

behave honestly by paying them in units of this currency. 

 

Block Reward.  How is this done? There are two separate incentive mechanisms in Bitcoin. The first is 

the block reward. According to the rules of Bitcoin, the node that creates a block gets to include a 

special transaction in that block. This transaction is a coin-creation transaction, analogous to 

CreateCoins in Scroogecoin, and the node can also choose the recipient address of this transaction. Of 

course that node will typically choose an address belonging to itself. You can think of this as a 

payment to the node in exchange for the service of creating a block on the consensus chain.  

 

At the time of this writing, the value of the block reward is fixed at 25 Bitcoins. But it actually halves 

every 210,000 blocks. Based on the rate of block creation that we will see shortly, this means that the 

rate drops roughly every four years. We’re now in the second period. For the first four years of 

Bitcoin’s existence, the block reward was 50 bitcoins; now it’s 25. And it’s going to keep halving. This 

has some interesting consequences, which we will see shortly. 

 

You may be wondering why the block reward incentivizes honest behavior. It may appear, based on 

what what we’ve said so far, that this node gets the block reward regardless of whether it proposes a 

valid block or behaves maliciously. But this is not true! Think about it — how will this node “collect” its 

reward? That will only happen if the block in question ends up on the long-term consensus branch 

because just like every other transaction, the coin-creation transaction will only be accepted by other 

nodes if it ends up on the consensus chain. That’s the key idea behind this incentive mechanism. It’s a 

very subtle but very powerful trick. It incentivizes nodes to behave in whatever way they believe will 

get other nodes to extend their blocks. So if most of the network is following the longest valid branch 

rule, it incentivizes all nodes to continue to follow that rule. That’s Bitcoin’s first incentive mechanism.  

 

We mentioned that every 210,000 blocks (or approximately four years), the block reward is cut in half. 

In figure 2.3, the slope of this curve is going to keep halving. This is a geometric series, and you might 

know that it means that there is a finite sum. It works out to a total of 21 million bitcoins. 

 



 

Figure 2.3 The block reward is cut in half every four years limiting the total supply of bitcoins to 21 

million. 

 

 

It is important to note that this is the only way in which new bitcoins are allowed to be created. There 

is no other coin generation mechanism, and that’s why 21 million is a final and total number (as the 

rules stand now, at least) for how many bitcoins there can ever be. This new block creation reward is 

actually going to run out in 2140, as things stand now. Does that mean that the system will stop 

working in 2140 and become insecure because nodes no longer have the incentive to behave 

honestly? Not quite. The block reward is only the first of two incentive mechanisms in Bitcoin.  

 

Transaction fees The second incentive mechanism is called the transaction fee. The creator of any 

transaction can choose to make the total value of the transaction outputs less than the total value of 

its inputs. Whoever creates the block that first puts that transaction into the block chain gets to 

collect the difference, which acts a transaction fee. So if you’re a node that’s creating a block that 

contains, say, 200 transactions, then the sum of all those 200 transaction fees is paid to the address 

that you put into that block. The transaction fee is purely voluntary, but we expect, based on our 

understanding of the system, that as the block reward starts to run out, it will become more and more 

important, almost mandatory, for users to include transaction fees in order to get a reasonable quality 

of service. To a certain degree, this is already starting to happen now. But it is yet unclear precisely 

how the system will evolve; it really depends on a lot of game theory which hasn’t been fully worked 

out yet. That’s an interesting area of open research in Bitcoin. 

 

There are still a few problems remaining with the consensus mechanism as we described it. The first 



major one is the leap of faith that we asked you to take that somehow we can pick a random node. 

Second, we’ve created a new problem by giving nodes these incentives for participation. The system 

can become unstable as the incentives cause a free-for-all where everybody wants to run a Bitcoin 

node in the hope of capturing some of these rewards. And a third one is an even trickier version of 

this problem, which is that an adversary might create a large number of Sybil nodes to try and subvert 

the consensus process. 

 

Mining and proof-of-work. It turns out that all of these problems are related, and all of them have the 

same solution, which is called proof-of-work. The key idea behind proof-of-work is that we 

approximate the selection of a random node by instead selecting nodes in proportion to a resource 

that we hope that nobody can monopolize. If, for example, that resource is computing power, then 

it’s a proof-of-work system. Alternately, it could be in proportion to ownership of the currency, and 

that’s called proof-of-stake. Although it’s not used in Bitcoin, proof-of-stake is a legitimate alternate 

model and it’s used in other cryptocurrencies. We’ll see more about proof-of-stake and other 

proof-of-work variants in Chapter 8. 

 

But back to proof-of-work. Let’s try to get a better idea of what it means to select nodes in proportion 

to their computing power. Another way of understanding this is that we’re allowing nodes to compete 

with each other by using their computing power, and that will result in nodes automatically being 

picked in that proportion. Yet another view of proof-of-work is that we’re making it moderately hard 

to create new identities. It’s sort of a tax on identity creation and therefore on the Sybil attack. This 

might all appear a bit vague, so let’s go ahead and look at the details of the proof-of-work system 

that’s used in Bitcoin, which should make things a lot clearer. 

 

Bitcoin achieves proof-of-work using hash puzzles. In order to create a block, the node that proposes 

that block is required to find a number, or nonce, such that when you concatenate the nonce, the 

previous hash, and the list of transactions that comprise that block and take the hash of this whole 

string, then that hash output should be a number that falls into a target space that is quite small in 

relation to the much larger output space of that hash function. We can define such a target space as 

any value falling below a certain target value. In this case, the nonce will have to satisfy the following 

inequality: 

 

(nonce || prev_hash || tx || tx || ... || tx) argetH < t  

 

As we saw earlier, normally a block contains a series of transactions that a node is proposing. In 

addition, a block also contains a hash pointer to the previous block . In addition, we’re now requiring 1

that a block also contain a nonce. The idea is that we want to make it moderately difficult to find a 

nonce that satisfies this required property, which is that hashing the whole block together, including 

that nonce, is going to result in a particular type of output. If the hash function satisfies the 

1  We are using the term hash pointer loosely. The pointer is just a string in this context as it need not tell us where to 
find this block. We will find the block by asking other peers on the network for it. The important part is the hash that 
both acts as an ID when requesting other peers for the block and lets us validate the block once we have obtained it. 



puzzle-friendliness property from Chapter 1, then the only way to succeed in solving this hash puzzle 

is to just try enough nonces one by one until you get lucky. So specifically, if this target space were 

just one percent of the overall output space, you would have to try about 100 nonces before you got 

lucky. In reality, the size of this target space is not nearly as high as one percent of the output space. 

It’s much, much smaller than that as we will see shortly. 

 

This notion of hash puzzles and proof of work completely does away with the requirement to 

magically pick a random node. Instead, nodes are simply independently competing to solve these 

hash puzzles all the time. Once in a while, one of them will get lucky and will find a random nonce that 

satisfies this property. That lucky node then gets to propose the next block. That’s how the system is 

completely decentralized. There is nobody deciding which node it is that gets to propose the next 

block. 

 

Difficult to compute. There are three important properties of hash puzzles. The first is that they need 

to be quite difficult to compute. We said moderately difficult, but you’ll see why this actually varies 

with time. As of the end of 2014, the difficulty level is about 1020 hashes per block. In other words the 

size of the target space is only 1/1020 of the size of the output space of the hash function. This is a lot 

of computation — it’s out of the realm of possibility for a commodity laptop, for example. Because of 

this, only some nodes even bother to compete in this block creation process. This process of 

repeatedly trying and solving these hash puzzles is known as Bitcoin mining, and we call the 

participating nodes miners. Even though technically anybody can be a miner, there’s been a lot of 

concentration of power in the mining ecosystem due to the high cost of mining. 

 

Parameterizable cost. The second property is that we want the cost to be parameterizable, not a 

fixed cost for all time. The way that’s accomplished is that all the nodes in the Bitcoin peer-to-peer 

network will automatically recalculate the target, that is the size of the target space as a fraction of 

the output space, every 2016 blocks. They recalculate the target in such a way that the average time 

between successive blocks produced in the Bitcoin network is about 10 minutes. With a 10-minute 

average time between blocks, 2016 blocks works out to two weeks. In other words, the recalculation 

of the target happens roughly every two weeks. 

 

Let’s think about what this means. If you’re a miner, and you’ve invested a certain fixed amount of 

hardware into Bitcoin mining, but the overall mining ecosystem is growing, more miners are coming 

in, or they’re deploying faster and faster hardware, that means that over a two week period, slightly 

more blocks are going to be found than expected. So nodes will automatically readjust the target, and 

the amount of work that you have to do to be able to find a block is going to increase. So if you put in 

a fixed amount of hardware investment, the rate at which you find blocks is actually dependent upon 

what other miners are doing. There’s a very nice formula to capture this, which is that the probability 

that any given miner, Alice, is going to win the next block is equivalent to the fraction of global hash 

power that she controls. This means that if Alice has mining hardware that’s about 0.1 percent of total 

hash power, she will find roughly one in every 1,000 blocks.  

 

What is the purpose of this readjustment? Why do we want to maintain this 10-minute invariant? The 



reason is quite simple. If blocks were to come very close together, then there would be a lot of 

inefficiency, and we would lose the optimization benefits of being able to put a lot of transactions in a 

single block. There is nothing magical about the number 10, and if you went down from 10 minutes to 

5 minutes, it would probably be just fine. There’s been a lot of discussion about the ideal block latency 

that altcoins, or alternative cryptocurrencies, should have. But despite some disagreements about the 

ideal latency, everybody agrees that it should be a fixed amount. It cannot be allowed to go down 

without limit. That’s why we have the automatic target recalculation feature.  

 

The way that this cost function and proof of work is set up allows us to reformulate our security 

assumption. Here’s where we finally depart from the last leap of faith that we asked you to take 

earlier. Instead of saying that somehow the majority of nodes are honest in a context where nodes 

don’t even have identities and not being clear about what that means, we can now state crisply, that 

a lot of attacks on Bitcoin are infeasible if the majority of miners, weighted by hash power, are 

following the protocol — or, are honest. This is true because if a majority of miners, weighted by hash 

power, are honest, the competition for proposing the next block will automatically ensure that there 

is at least a 50 percent chance that the next block to be proposed at any point is coming from an 

honest node. 

 

 

Sidebar. in the research fields of distributed systems and computer security, it is common to 

assume that some percentage of nodes are honest and to show that the system works as intended 

even if the other nodes behave arbitrarily. That’s basically the approach we’ve taken here, except 

that we weight nodes by hash power in computing the majority. The original Bitcoin whitepaper 

contains this type of analysis as well. 

 

But the field of game theory provides an entirely different, and arguably more sophisticated and 

realistic way to determine how a system will behave. In this view, we don’t split nodes into honest 

and malicious. Instead, we assume that every node acts according to its incentives. Each node picks 

a (randomized) strategy to maximize its payoff, taking into account other nodes’ potential 

strategies. If the protocol and incentives are designed well, then most nodes will follow the rules 

most of the time. “Honest” behavior is just one strategy of many, and we attach no particular moral 

salience to it.  

 

In the game theoretic view, the big question is whether the default miner behavior is a “Nash 

equilibrium,” that is, whether it represents a stable situation in which no miner can realize a higher 

payoff by deviating from honest behavior. This question is still contentious and an active area of 

research. 

 

 

Solving hash puzzles is probabilistic because nobody can predict which nonce is going to result in 

solving the hash puzzle. The only way to do it is to try nonces one by one and hope that one succeeds. 

Mathematically, this process is called Bernoulli trials. A Bernoulli trial is an experiment with two 



possible outcomes, and the probability of each outcome occurring is fixed between successive trials. 

Here, the two outcomes are whether or not the hash falls in the target, and assuming the hash 

functions behaves like a random function, the probability of those outcomes is fixed. Typically, nodes 

try so many nonces that Bernoulli trials, a discrete probability process, can be well approximated by a 

continuous probability process called a Poisson process, a process in which events occur 

independently at a constant average rate. The end result of all of that is that the probability density 

function that shows the relative likelihood of the time until the next block is found looks like Figure 

2.4. 

 

 

Figure 2.4 Probability density function of the time until the next block is found. 

 

This is known as an exponential distribution. There is some small probability that if a block has been 

found now, the next block is going to be found very soon, say within a few seconds or a minute. And 

there is also some small probability that it will take a long time, say an hour, to find the next block. 

But overall, the network automatically adjusts the difficulty so that the inter-block time is maintained 

at an average, long term, of 10 minutes. Notice that Figure 2.3 shows how frequently blocks are going 

to be created by the entire network not caring about which miner actually finds the block. 

 

If you’re a miner, you’re probably interested in how long it will take you to find a block. What does 

this probability density function look like? It’s going to have the same shape, but it’s just going to have 

a different scale on the x-axis. Again, it can be represented by a nice equation.  

For a specific miner: 

ean time to next block m =   10 minutes
fraction of  hash power  

 

If you have 0.1 percent of the total network hash power, this equation tells us that you’re going to 

find blocks once every 10,000 minutes, which is just about a week. Not only is your mean time 

between blocks going to be very high, but the variance of the time between blocks found by you is 

also going to be very high. This has some important consequences that we’re going to look at in 

chapter 5. 



 

Trivial to verify. Let’s now turn to the third important property of this proof of work function, which is 

that it is trivial to verify that a node has computed proof of work correctly. Even if it takes a node, on 

average, 1020 tries to find a nonce that makes the block hash fall below the target, that nonce must be 

published as part of the block. It is thus trivial for any other node to look at the block contents, hash 

them all together, and verify that the output is less than the target. This is quite an important 

property because, once again, it allows us to get rid of centralization. We don’t need any centralized 

authority verifying that miners are doing their job correctly. Any node or any miner can instantly 

verify that a block found by another miner satisfies this proof-of-work property.  

 

2.5: Putting it all together 

 

Cost of mining. Let’s now look at mining economics. We mentioned it’s quite expensive to operate as 

a miner. At the current difficulty level, finding a single block takes computing about 1020 hashes and 

the block reward is about 25 Bitcoins, which is a sizable amount of money at the current exchange 

rate. These numbers allow for an easy calculation of whether it’s profitable for one to mine, and we 

can capture this decision with a simple statement: 

 

If  

     mining reward > mining cost  

     then miner profits 

where  

     mining reward = block reward + tx fees  

     mining cost = hardware cost + operating costs (electricity, cooling, etc.) 

 

 

Fundamentally, the mining reward that the miner gets is in terms of the block reward and transaction 

fees. The miner asks himself how it compares to the total expenditure, which is the hardware and 

electricity cost.  

 

But there are some complications to this simple equation. The first is that, as you may have noticed, 

the hardware cost is a fixed cost whereas the electricity cost is a variable cost that is incurred over 

time. Another complication is that the reward that miners get depends upon the rate at which they 

find blocks, which depends on not just the power of their hardware, but on the ratio of their hash rate 

to the total global hash rate. A third complication is that the costs that the miner incurs are typically 

denominated in dollars or some other traditional currency, but their reward is denominated in 

bitcoin. So this equation has a hidden dependence on Bitcoin’s exchange rate at any given time. And 

finally, so far we’ve assumed that the miner is interested in honestly following the protocol. But the 

miner might choose to use some other mining strategy instead of always attempting to extend the 

longest valid branch. So this equation doesn’t capture all the nuances of the different strategies that 

the miner can employ. Actually analyzing whether it makes sense to mine is a complicated game 

theory problem that’s not easily answered. 



 

At this point, we’ve obtained a pretty good understanding of how a Bitcoin achieves decentralization. 

We will now recap the high level points and put it all together in order to get an even better 

understanding.  

 

Let’s start from identities. As we’ve learned, there are no real-world identities required to participate 

in the Bitcoin protocol. Any user can create a pseudonymous key pair at any moment, any number of 

them. When Alice wants to pay Bob in bitcoins, the Bitcoin protocol does not specify how Alice learns 

Bob’s address. Given these pseudonymous key pairs as identities, transactions are basically messages 

that are broadcast to the Bitcoin peer-to-peer network that are instructions to transfer coins from one 

address to another. Bitcoins are just transaction outputs, and we will discuss this in much more detail 

in the next chapter.  

 

Sidebar. Bitcoin doesn’t have fixed denominations like US dollars, and in particular, there is no 
special designation of “1 bitcoin.” Bitcoins are just transaction outputs, and in the current rules, 
they can have an arbitrary value with 8 decimal places of precision. The smallest possible value is 
0.00000001 BTC (bitcoins), which is called 1 Satoshi. 

 

The goal of the Bitcoin peer-to-peer network is to propagate all new transactions and new blocks to 

all the Bitcoin peer nodes. But the network is highly imperfect, and does a best-effort attempt to relay 

this information. The security of the system doesn’t come from the perfection of the peer-to-peer 

network. Instead, the security comes from the block chain and the consensus protocol that we 

devoted much of this chapter to studying. 

 

When we say that a transaction is included in the block chain, what we really mean is that the 

transaction has achieved numerous confirmations. There’s no fixed number to how many 

confirmations are necessary before we are sufficiently convinced of its inclusion, but six is a 

commonly-used heuristic. The more confirmations a transaction has received, the more certain you 

can be that this transaction is part of the consensus chain. There will often be orphan blocks, or blocks 

that don’t make it into the consensus chain. There are a variety of reasons that could lead to a block 

being orphaned. The block may contain an invalid transaction, or a double-spend attempt. It could 

also just be a result of network latency. That is, two miners may simply end up finding new blocks 

within just a few seconds of each other. So both of these blocks were broadcast nearly simultaneously 

onto the network, and one of them will inevitably be orphaned.  

 

Finally, we looked at hash puzzles and mining. Miners are special types of nodes that decide to 

compete in this game of creating new blocks. They’re rewarded for their effort in terms of both newly 

minted bitcoins (the new-block reward) and existing bitcoins (transaction fees), provided that other 

miners build upon their blocks. A subtle but crucial point: say that Alice and Bob are two different 

miners, and Alice has 100 times as much computing power as Bob. This does not mean that Alice will 

always win the race against Bob to find the next block. Instead, Alice and Bob have a probability ratio 

of finding the next block, in the proportion 100 to 1. In the long term, Bob will find, on average, one 



percent of the number of blocks that Alice finds. 

 

We expect that miners will typically be somewhere close to the economic equilibrium in the sense 

that the expenditure that they incur in terms of hardware and electricity will be roughly equal to the 

rewards that they obtain. The reason is that if a miner is consistently making a loss, she will probably 

stop mining. On the other hand, and if mining is very profitable given typical hardware and electricity 

costs, then more mining hardware would enter the network. The increased hash rate would lead to an 

increase in the difficulty, and each miner’s expected reward would drop.  

 

This notion of distributed consensus permeates Bitcoin quite deeply. In a traditional currency, 

consensus does come into play to a certain limited extent. Specifically, there is a consensus process 

that determines the exchange rate of the currency. That is certainly true in Bitcoin as well; We need 

consensus around the value of Bitcoin. But in Bitcoin, additionally, we need consensus on the state of 

the ledger, which is what the block chain accomplishes. In other words, even the accounting of how 

many bitcoins you own is subject to consensus. When we say that Alice owns a certain amount or 

number of bitcoins, what we actually mean is that the Bitcoin peer-to-peer network, as recorded in 

the block chain, considers the sum total of all Alice’s addresses to own that number of bitcoins. That is 

ultimate nature of truth in Bitcoin: ownership of bitcoins is nothing more than other nodes agreeing 

that a given party owns those bitcoins. 

Finally, we need consensus about the rules of the system because occasionally, the rules of the 

system have to change. There are two types of changes to the rules of Bitcoin, known respectively as 

soft forks and hard forks. We’re going to defer this discussion of the differences to later chapters in 

which we will discuss them in detail. 

 

Getting a cryptocurrency off the ground. Another subtle concept is that of bootstrapping. There is a 

tricky interplay between three different ideas in Bitcoin: the security of the block chain, the health of 

the mining ecosystem, and the value of the currency. We obviously want the block chain to be secure 

for Bitcoin to be a viable currency. For the block chain to be secure, an adversary must not be able to 

overwhelm the consensus process. This in turn means that an adversary cannot create a lot of mining 

nodes and take over 50 percent or more of the new block creation.  

 

But when will that be true? A prerequisite is having a healthy mining ecosystem made up of largely 

honest, protocol-following nodes. But what’s a prerequisite for that — when can we be sure that a lot 

of miners will put a lot of computing power into participating in this hash puzzle solving competition? 

Well, they’re only going to do that if the exchange rate of Bitcoin is pretty high because the rewards 

that they receive are denominated in Bitcoins whereas their expenditure is in dollars. So the more the 

value of the currency goes up, the more incentivized these miners are going to be.  

 

But what ensures a high and stable value of the currency? That can only happen if users in general 

have trust in the security of the block chain. If they believe that the network could be overwhelmed at 

any moment by an attacker, then Bitcoin is not going to have a lot of value as a currency. So you have 

this interlocking interdependence between the security of the block chain, a healthy mining 



ecosystem and the exchange rate. 

 

Because of the cyclical nature of this three-way dependence, the existence of each of these is 

predicated on the existence of the others. When Bitcoin was first created, none of these three 

existed. There were no miners other than Nakamoto himself running the mining software. Bitcoin 

didn’t have a lot of value as a currency. And the block chain was, in fact, insecure because there was 

not a lot of mining going on and anybody could have easily overwhelmed this process.  

 

There’s no simple explanation for how Bitcoin went from not having any of these properties to having 

all three of them. Media attention was part of the story — the more people hear about Bitcoin, the 

more they’re going to get interested in mining. And the more they get interested in mining, the more 

confidence people will have in the security of the block chain because there’s now more mining 

activity going on, and so forth. Incidentally, every new Altcoin that wants to succeed also has to 

somehow solve this problem of pulling itself up by its bootstraps.  

 

51-percent attack.  Finally, let’s consider what would happen if consensus failed and there was in fact 

a 51-percent attacker who controls 51 percent or more of the mining power in the Bitcoin network. 

We’ll consider  a variety of possible attacks and see which ones can actually be carried out by such an 

attacker. 

 

First of all, can this attacker steal coins from an existing address? As you may have guessed, the 

answer is no, because stealing from an existing address is not possible unless you subvert the 

cryptography. It’s not enough to subvert the consensus process. This is not completely obvious. Let’s 

say the 51 percent attacker creates an invalid block that contains an invalid transaction that 

represents stealing Bitcoins from an existing address that the attacker doesn’t control and transferring 

them to his own address. The attacker can pretend that it’s a valid transaction and keep building upon 

this block. The attacker can even succeed in making that the longest branch. But the other honest 

nodes are simply not going to accept this block with an invalid transaction and are going to keep 

mining based on the last valid block that they found in the network. So what will happen is that there 

will be what we call a fork in the chain.  

 

Now imagine this from the point of view of the attacker trying to spend these invalid coins, and send 

them to some merchant Bob as payment for some goods or service. Bob is presumably running a 

Bitcoin node himself, and it will be an honest node. Bob’s node will reject that branch as invalid 

because it contains an invalid transaction. It’s invalid because the signatures didn’t check out. So 

Bob’s node will simply ignore the longest branch because it’s an invalid branch. And because of that, 

subverting consensus is not enough. You have to subvert cryptography to steal bitcoins. So we 

conclude that this attack is not possible for a 51 percent attacker. 

 

We should note that all this is only a thought experiment. If there were, in fact, actual signs of a 51 

percent attack, what will probably happen is that the developers will notice this and react to it. They 

will update the Bitcoin software, and we might expect that the rules of the system, including the 

peer-to-peer network, might change in some form to make it more difficult for this attack to succeed. 



But we can’t quite predict that. So we’re working in a simplified model where a 51 percent attack 

happens, but other than that, there are no changes or tweaks to the rules of the system. 

 

Let’s consider another attack. Can the 51-percent attacker suppress some transactions? Let’s say 

there is some user, Carol, whom the attacker really doesn’t like. The attacker knows some of Carol’s 

addresses, and wants to make sure that no coins belonging to any of those addresses can possibly be 

spent. Is that possible? Since he controls the consensus process of the block chain, the attacker can 

simply refuse to create any new blocks that contain transactions from one of Carol’s addresses. The 

attacker can further refuse to build upon blocks that contain such transactions. However, he can’t 

prevent these transactions from being broadcast to the peer-to-peer network because the network 

doesn’t depend on the block chain, or on consensus, and we’re assuming that the attacker doesn’t 

fully control the network. The attacker cannot stop the transactions from reaching the majority of 

nodes, so even if the attack succeeds, it will at least be apparent that the attack is happening. 

 

Can the attacker change the block reward? That is, can the attacker start pretending that the block 

reward is, instead of 25 Bitcoins, say 100 Bitcoins? This is a change to the rules of the system, and 

because the attacker doesn’t control the copies of the Bitcoin software that all of the honest nodes 

are running, this is also not possible. This is similar to the reason why the attacker cannot include 

invalid transactions. Other nodes will simply not recognize the increase in the block reward, and the 

attacker will thus be unable to spend them. 

 

Finally, can the attacker somehow destroy confidence in Bitcoin? Well, let’s imagine what would 

happen. If there were a variety of double-spend attempts, situations in which nodes did not extend 

the longest valid branch, and other attempted attacks, then people are going to likely decide that 

Bitcoin is no longer acting as a decentralized ledger that they can trust. People will lose confidence in 

the currency, and we might expect that the exchange rate of Bitcoin will plummet. In fact, if it is 

known that there is a party that controls 51 percent of the hash power, then it’s possible that people 

will lose confidence in Bitcoin even if the attacker is not necessarily trying to launch any attacks. So it 

is not only possible, but in fact likely, that a 51 percent attacker of any sort will destroy confidence in 

the currency. Indeed, this is the main practical threat if a 51 percent attack were ever to materialize. 

Considering the amount of expenditure that the adversary would have to put into attacking Bitcoin 

and achieving a 51 percent majority, none of the other attacks that we described really make sense 

from a financial point of view. 

 

Hopefully, at this point you’ve obtained a really good understanding of how decentralization is 

achieved in Bitcoin. You should have a good command on how identities work in Bitcoin, how 

transactions are propagated and validated, the role of the peer-to-peer network in Bitcoin, how the 

block chain is used to achieve consensus, and how hash puzzles and mining work. These concepts 

provide a solid foundation and a good launching point for understanding a lot of the more subtle 

details and nuances of Bitcoin, which we’re going to see in the coming chapters.  
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Exercises 
1. Why do miners run “full nodes” that keep track of the entire block chain whereas Bob the                  2

merchant can get away with a “lite node” that implements “simplified payment verification,” needing              

to examine only the last few blocks? 

 

2. If a malicious ISP completely controls a user’s connections, can it launch a double-spend attack                

against the user? How much computational effort would this take? 

 

3. Consider Bob the merchant deciding whether or not to accept the CA→ B transaction. What Bob is                  

really interested in is whether or not the other chain will catch up. Why, then, does he simply check                   

how many confirmations CA→ B has received, instead of computing the difference in length between               

the two chains? 

 

 

 

2  This only applies to “solo” miners who’re not part of a mining pool, but we haven’t discussed that yet. 



4. Even when all nodes are honest, blocks will occasionally get orphaned: if two miners Minnie and                 

Mynie discover blocks nearly simultaneously, neither will have time to hear about the other’s block               

before broadcasting hers.  

 

4a. What determines whose block will end up on the consensus branch? 

 

4b. What factors affect the rate of orphan blocks? Can you derive a formula for the rate based on                   

these parameters? 

 

4c. Try to empirically measure this rate on the Bitcoin network. 

 

4d. If Mynie hears about Minnie’s block just before she’s about to discover hers, does that mean she                  

wasted her effort? 

 

4e. Do all miners have their blocks orphaned at the same rate, or are some miners affected                 

disproportionately? 

 

5a. How can a miner establish an identity in a way that’s hard to fake? (i.e., anyone can tell which                    

blocks were mined by her.) 

 

5b. If a miner misbehaves, can other miners “boycott” her by refusing to build on her blocks on an                   

ongoing basis? 

 

6a. Assuming that the total hash power of the network stays constant, what is the probability that a                  

block will be found in the next 10 minutes? 

 

6b. Suppose Bob the merchant wants to have a policy that orders will ship within x minutes after                  

receipt of payment. What value of x should Bob choose so that with 99% confidence 6 blocks will be                   

found within x minutes? 


