
Monolithic kernel vs. Microkernel

Benjamin Roch
TU Wien

phibre@gmx.net

ABSTRACT
This document explains the two main kernel architectures of
operating systems: the monolithic kernel and the microker-
nel. Starting with an introduction about the term ”kernel”
itself and its meaning for operating systems as a whole, it
continues with a comparison of benefits and disadvantages
of both architectures, rounded up by a list of popular im-
plementations.

1. INTRODUCTION
The kernel is the indispensable and therefore most impor-
tant part of an operating system. Roughly, an operating sys-
tem itself consits of two parts: the kernel space (privileged
mode) and the user space (unprivileged mode). Without
that, protection between the processes would be impossible.
There are two different concepts of kernels: monolithic ker-
nel and µ-kernel (microkernel). The older approach is the
monolithic kernel, of which Unix, MS-DOS and the early
Mac OS are typical representants of. It runs every basic sys-

Figure 1: Monolithic kernel based operating system

tem service like process and memory managment, interrupt
handling and I/O communication, file system, etc. in ker-
nel space (Figure 1). It is constructed in a layered fashion,
built up from the fundemental process managment up to the
interfaces to the rest of the operating system (libraries and
on top of them the applications). The inclusion of all basic
services in kernel space has three big drawbacks: the kernel
size, lack of extensibility and the bad maintainability. Bug-
fixing or the addition of new features means a recompilation
of the whole kernel. This is time and resource consuming
because the compilation of a new kernel can take several
hours and alot of memory. Everytime someone adds a new
feature or fixes a bug, it means recompilation of the whole
kernel.
To overcome these limitations of extensibility and maintain-
ability, the idea of µ-kernels appeared at the end of the
1980’s. The concept (Figure 2) was to reduce the kernel

Figure 2: Microkernel based operating system

to basic process communication and I/O control, and let
the other system services reside in user space in form of nor-
mal processes (as so called servers). There is a server for
managing memory issues, one server does process manag-
ment, another one manages drivers, and so on. Because the
servers do not run in kernel space anymore, so called ”con-
text switches” are needed, to allow user processes to enter
privileged mode (and to exit again). That way, the µ-kernel
is not a block of system services anymore, but represents
just several basic abstractions and primitives to control the
communication between the processes and between a pro-



cess and the underlying hardware. Because communication
is not done in a direct way anymore, a message system is
introduced, which allows independent communication and
favours extensibility (see 2.1 for more details).
Currently, there are two different generations of µ-kernels.
The first generation was a more or less a stripped-down
monolithic kernel. Because of performance drawbacks con-
cerning process communication, several system services like
device drivers, communication stacks, etc. found their way
back into kernel space. This resulted in an even bigger kernel
than before, which was slower than its monolithic counter-
part.
Research in the field of µ-kernels proove, that it is not the
best solution to create a hybrid kernel 1 , but a pure micro-
kernel, which has to be very small in size. So small, that it
fits into the processor’s first level cache as a whole. Second
generation µ-kernels like the L4 are highly optimized, not
just referring to the processor family, but also to the pro-
cessor itself 2 , which results in a very good I/O performance.

2. COMPARISON BETWEEN BASIC CON-
CEPTS OF THE TWO APPROACHES

This section introduces the basic concepts of operating sys-
tems, with their realizations in the two different architec-
tures. For more information on operating systems, see e.g.
[5].

2.1 Inter Process Communication
A process means the representation of a program in mem-
ory. It may consist of smaller, programmer defined parts
called ”threads”. Threads allow virtually parallel execution
of different sections of a program. A thread is the smallest
unit3 of executable code. A process can consist of several
threads. In the next sections a thread and a process are
meant to be equal, if not otherwise stated.
The earliest concept of inter-process communication (IPC)
is called signals. It is widely used in Unix systems. Sig-
nals are predefined numerical constants, e.g. KILL, STOP,
etc., which are sent to a process by a user, the operating
system or another process. The signals are received by so
called signal handlers, simple procedures, which belong to
each process. This system is fast, but the problem is, that
the signals have to be predefined numbers. Existing signals
cannot be changed, because then, processes would react a
different way than expected. New signals have to be stan-
dardized, which is too tedious for implementing just a single
application.
Another solution for communication are the so called sock-
ets. A process binds itself to one socket (or more), and
”listens” to it, i.e. from then on, it can receive messages
from other processes. Most of the sockets are full duplex
4. The owner of a socket, i.e. the process which is bind to

1A hybrid kernel is a mixture of monolithic and µ-kernel
design.
2Intel has got a processor family which is called ”Pentium”.
The optimization would not just differentiate between com-
mon intel x86 and Pentiums, but more fine grained, i.e. be-
tween a pentium II and a pentium III.
3With exception of a single instruction.
4Full duplex means communication in both directions: read
and write at the same time.

a socket, is also called server, while the other processes are
called clients. Because messages sent through sockets are
not limited to numerical values, the information could be
more than just control signals. There is no limitation upon
extensibility, as long as the server knows what the received
messages mean.
A system more powerful than sockets are message queues.
Built as a fifo queue, a message queue stores all incoming
messages, sent by other processes and sorts them, based on
their priority. One process can have more than one message
queue, with every message queue being responsible for dif-
ferent kinds of messages.
While monolithic kernels use signals and sockets to ensure
inter process communication, the µ-kernel approach uses
message queues. It grants, that all parts of the system are
exchangeable.
System components of the monolithic kernels are somewhat
”hardwired”. This prevents exstensibility. The first µ-kernels
poorly implemented the IPC and were slow on context switches.
[4] presents new concepts to overcome these performance
lacks.

2.2 Memory Managment
Monolithic kernels implement everything needed for memory
managment in kernel space. This includes allocation strate-
gies, virtual memory managment, and page replacment al-
gorithms (Figure 3).

Figure 3: Memory managment of monolithic kernels

First generation µ-kernels delegate the memory managment
to user space, controlling just the basic access rights (Fig-
ure 4). One of the servers is responsible for managing page
faults and reserving new memory. Every time a page fault
occurs 5, the request has to take the way through the kernel
to the pager. The pager must enter privileged mode to get
access to memory and get back to user mode. Then it sends
the result back to the triggering process (again through the
kernel). The whole procedure to handle page faults or re-
serve new memory pages is tedious and time consuming.

5A page fault is generated, when the requested memory page
is not in memory but swapped out on harddisk.



Figure 4: Memory managment of 1st-generation µ-

kernels

To solve the performance loss, second generation µ-kernels
have more refined strategies of memory managment, e.g. L4
(Figure 5). With L4 every process has got three memory

Figure 5: Memory managment of the L4

managment primitves: map, grant and flush. A process
maps memory pages to another process if he wants to share
these pages. When a process grants pages to another pro-
cess, he cannot access them anymore, and they are under the
other process’ control, as long as the granting process does
not flushes them. Flushing regains granted and mapped
memory pages. This system now works as follows: The
µ-kernel reserves the whole system memory at startup to
one process, the base system process, which resides (like all
other processes) in user space. If a process needs memory,
he doesn’t have to take the way through the kernel any-
more, but directly asks the base system process. Because
every process can only grant/map/flush the memory pages
it owned before, memory protection still exists. That way

the overhead of context switches is reduced to a minimum
and performance is increased.

2.3 Security and Stability
The protection of system processes from being modified by
the user or other processes is an important feature of the
kernel. With the introduction of multitasking (and mul-
tithreading) new problems arised, concerning isolation of
memory and processes. These problems include issues like
race conditions, memory protection and system security it-
self. The kernel must be able to grant that in case a process
cracks down, the system’s performance will not be influ-
enced. This is a more or less simple task if we talk about
processes, which run in user space. But what happens, if
a process crashes inside the kernel? Because of the ”hard-
wiring” of system processes and the resulting dependency
of the monolithic approach, it is assumable that other pro-
cesses will also crash, resulting in a system-wide halt.
Excluding system processes from kernel space is a way to
overcome these problems. Another argument for a true µ-
kernelis its codesize. It is easier to ensure the correctness of
a small kernel, than a big one. That way, stability issues are
simpler to solve with that approach.

2.4 I/O Communication
I/O communication works through interrupts, issued by or
sent to the hardware.
Monolithic kernels (and most of the first generation µ-kernels)
run device drivers inside the kernel space. Hardware inter-
rupts are directly handled by kernel processes. To add or
change features provided by the hardware, all layers above
the changed layer in the monolithic kernel also have to be
changed in the worst case.
The concept of so called modules was introduced to achieve
more independence and seperation from the kernel. One
module represents (parts of) a driver and is (un)loadable
during runtime. That way, drivers which are not needed
by the system, are not loaded and memory is preserved.
But kernel modules are still binary kernel-dependent. This
means, modules working with monolithic kernel of genera-
tion A (e.g.: Linux 2.4.0) are not granted to cooperate with
its successor (e.g.: Linux 2.4.2). Source compatibility is of-
ten assured, but not always. If concepts change too much
inside the monolihic kernel, modules need not just a recom-
pilation, but a complete code adaption.
The µ-kernelapproach doesn’t handle I/O communication
directly. It only ensures the communication. Requests from
or to the hardware are redirected as messages by the µ-
kernelto the servers in user space. If the hardware trig-
gers an interrupt, the µ-kernelsends a message to the device
driver server, and has nothing more to do about it. The de-
vice driver server takes the message and sends it to the right
device driver. That way it is possible to add new drivers,
exchange the driver manager without exchanging drivers or
even exchange the whole driver managment system without
changing any other part of the system. [3] shows that it is
not desirable to put the drivers into kernel space, as it was
done by the first generation of µ-kernels, to get acceptible
performance. That way the size grows and the kernel cannot
be fully held in the processor’s cache memory.

2.5 Extensibility and Portability



Exstensibility is the most prominent fact for µ-kernels. It
is, beside its size, one of the biggest difference to monolithic
kernels.
Adding new features to a monolithic system means recompi-
lation of the whole kernel, often including the whole driver
infrastructure. If you have a new memeory managment rou-
tine and want to implement it into a monolithic architecture,
modification of other parts of the system could be needed.
In case of a µ-kernel the services are isolated from each other
through the message system. It is enough to reimplement
the new memory manager. The processes which formerly
used the other manager, do not notice the change. µ-kernels
also show their flexibility in removing features 6 . That way
a µ-kernel can be the base of a desktop operating system, as
well as of realtime appliancies in single chip systems. On the
other hand µ-kernels itself must be highly optimized for the
processor they are intended to run on. It was shown, that
it is not sufficient to just introduce a ”compatibility layer”
between kernel and processor as it was done with first gen-
eration µ-kernels. That way, µ-kernels are kept machine
independent and could be easily be ported. Unfortunately,
this approach prevented those µ-kernels from achieving the
necessary performance and thus flexibility. [2] shows, that
the introduction of such a layer between the kernel and pro-
cessor has several implications:
i) Such a µ-kernel cannot take advantage of specific hard-
ware.
ii) It cannot take precautions to circumvent or avoid perfor-
mance problems of specific hardware.
iii) µ-kernels form the lowest layer of operating system. There-
fore even the algorithms used inside the µ-kerneland its in-
ternal concepts are extremely processor depenedent.

3. IMPLEMENTATIONS
This is just a short overview presenting implementations of
monolithic kernels, µ-kernels and hybrids. See the footnotes
for links to more detailed information.

3.1 Monolithic kernel
3.1.1 GNU/Linux
GNU/Linux7 is a free available, open source implementa-
tion of unix, developed by thousands of individuals. It is
a typical representant of a monolithic kernel. Continously
enhanced, it often changes its structure. Changing parts of
the kernel means complete recompilation.
All system functions, including the whole process and mem-
ory managment, process and thread schelduling, I/O func-
tionality and drivers are implemented in kernel space. The
I/O communication, provided by so called modules, which
can be inserted and removed during runtime, are built against
the kernel, i.e.: If the kernel changes, the set of modules
changes too. The estimated size of an average monolithic
kernel is about twenty to thirty megabytes resulting in a
tedious maintenance process.

3.2 Hybrid kernel
3.2.1 Mach
6I.e.: Less security, little amount of drivers, ...
7http://www.gnu.org

Mach8 is a µ-kernel of the first generation, designed and
developed at the Carnegie Mellon university. It represents
the base, among others, of Next, Mac OS X, and built the
foundation for alot of other µ-kernels designs. It was thought
as a small-sized highly portable kernel which includes just
a minimum set of kernel functions. The poor performance
Mach showed in comparison to monolithic kernels led to
the assumption, that µ-kernels cannot be fast. But second
generation µ-kernels proved, that the lack of performance
came due implementation issues, not due the µ-kerneldesign
itself. Several mistakes of the first generation µ-kernels (e.g.
Mach) can be pointed out:
i) To ease portability, the designers introduced an additional
layer between the kernel and the CPU. That way, only the
layer should be optimized for a given processor, but this
approach turned out to be wrong [3].
ii) Because of poor performance, device drivers were put
back into kernel space. This resulted in a bloated kernel,
which couldn’t reside in processor cache anymore.
iii) Mach’s Inter-process communication is too tedious and
time-consuming.

3.2.2 Windows NT
Microsoft introduced the kernel for their Windows NT9 at
the beginning of the 1990s. It was planned to be a µ-
kernel, but due lack of performance, Microsoft decided to
put alot of system services back into kernel space, includ-
ing, among others, device drivers and communication stacks.
This bloated the kernel and it became bigger than most
monolithic kernels were that time.
NT (including the kernel) is designed as an object-oriented
operating system. Therefore, all basic structures, like pro-
cesses, threads, device drivers, and others are implemented
as objects, handled by an object manager. The kernel talks
to the hardware through a so called Hardware Abstraction
Layer (HAL), which favors porting to other system archi-
tectures.

3.3 Microkernel
3.3.1 QNX
QNX10 (”Quick Unix”) is the most popular pure µ-kernel-
based operating system for realtime applications. Realtime
applications emphasize on predictability and stability. Ex-
amples of realtime appliancies are embedded systems like
microwaves, dishwashers, car safety systems, cell phones,
etc. Primary targeted to the embedded market, it is also
available as desktop version.
Only the most fundamental primitves like signals, timers
and scheduling reside inside kernel space resulting in a just
64 kilobyte-sized kernel. All other components, e.g.: proto-
col stacks, drivers and filesystems, run outside the kernel.
All processes communicate via a single virtual messaging
bus, that lets you plug in or plug out any component on the
fly. The kernel of QNX (called neutrino) is posix complient,
implemented in C and can be therefore easily tailored to
different platforms and operating systems.
Developers can easily strip down the QNX kernel and re-
move unwanted functionality, e.g.: memory protection, which

8http://www-2.cs.cmu.edu/afs/cs/
project/mach/public/www/mach.html
9http://www.microsoft.com

10http://www.qnx.com



is implemented as a module. If the target application(s)
don’t need the property, it can be easily removed, without
editing any source code. QNX allows running, testing and
debugging drivers during runtime, due their kernel space in-
dependency. If you want to know more about QNX, please
refer to [1].

3.3.2 L4
The L411

µ-kernel was implemented at the TU Dresden by
the Systems Architecture Group in cooperation with the
IBM Watson research center. It belongs to the second-
generation of µ-kernels. It prooved together with the QNX
neutrino kernel, that µ-kernels cn be as fast as their mono-
lithic counterparts allowing easy extensibility.
The performance is reached by the small size (12 kilobytes
of code) and optimized inter-process communication (IPC).
Due just three basic abstractions 12 , and seven system calls,
on top of these abstractions, which are implemented in ker-
nel space, allowing the L4 to completely residing in the
processor’s first-level cache. All other functions, like mem-
ory managment, device drivers, interrupt handling, protocol
stacks, etc. reside in user space. That way, the L4 just con-
trols access to the hardware and does basic thread manag-
ment. Hardware interrupts are forwarded to the user space
as messages. The kernel is not involved in processing them.
Memory managment is completely done in user space and
fast address space switches are assured through processor-
optimized code.

4. CONCLUSION
L4 and QNX, have proven that speed is not an argument
against µ-kernels anymore. Their additional exstensibilty
and portability predestines them for different applications
reaching from embedded to desktop systems. They are more
easily maintainable than their monolithic counterparts. Due
the independency of the different parts made possible through
message passing, µ-kernel systems can be easily extended
and modified. Inter-process communication can be made
faster by clever communication algorithms, often excluding
the µ-kernel.
To achieve this perfomance, µ-kernels must be directly op-
timized for the processor, where they are intended to run
on. That way, the full potential of a processor can be used
directly.
µ-kernels allow to run multiple operating systems concur-
rently (Figure 6).

This implies new potential. Not every operating system
needs to implement its own device drivers or communica-
tion stacks (Figure 7).
An additional idea would be to completely integrate the µ-
kernel into the processor’s architecture. This would grant
even better performance and the best optimization for each
processor (Figure 8).

5. REFERENCES
[1] Frank Kolnick. The qnx 4 real-time operating system.

Jul 2000.

11http://os.inf.tu-dresden.de/L4/use.html
12The abstractions are: threads, address spaces, and IPC

Figure 6: Multiple operating systems running simul-

taniousley on top of a µ-kernel

Figure 7: Multiple operating systems on top of the

same base services

Figure 8: The µ-kernel is integrated into the proces-

sor’s architecture



[2] Jochen Liedtke. On µ-kernel construction. 15th ACM
Symposium on Operating System Principles (SOSP),
December 1995.

[3] Jochen Liedtke. µ-kernels must and can be small. 5th
Workshop on Object-Orientation in Operating Systems
(IWOOOS), October 1996.

[4] Jochen Liedtke. Achieved ipc performance (still
foundation for extensibility). 6th Workshop on Hot
Topics in Operating Systems (HotOS), May 1997.

[5] William Stallings. Operating systems. internals and
design principles. 3rd (international) edition. 1998.

[6] Lok Sun Nelson Tam. A comparison of l4 and k42 on
powerpc. The university of New South Wales, Dec 2003.


