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1. INTRODUCTION 

Proposed is an algorithm that uses only c &’ messages to create mutual exclusion 
in a computer network, where N is the number of nodes and c a constant between 
3 and 5. It is assumed that the nodes communicate only by messages and do not 
share memory. An error-free underlying communications network supports mes- 
sage transfers in which transit times may vary but messages between two nodes 
are delivered in the order sent. 

The creation of mutual exclusion in a computer network under distributed 
control is not trivial. Ricart and Agrawala [8] proposed an algorithm that uses 
2(N - 1) messages: (N - 1) messages to convey a request to all other nodes and 
(N - 1) messages to obtain permissions from them. It is thus based on a 
unanimous consensus rule. The algorithm requires that each node requesting 
mutual exclusion communicate to all other nodes. It is a distributed algorithm, 
in the sense that each node always bears an equal amount of responsibility to 
control mutual exclusion and that each node is required to perform an equal 
amount of work to obtain mutual exclusion, such as the number of request 
messages. The voting technique used in Thomas [ll] is based on a majority 
consensus rule and requires that a node requesting mutual exclusion obtain a 
permission vote from only a majority of the nodes. Thus, in the best case, the 
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number of permission messages required to obtain mutual exclusion is reduced 
to a half, N/2. It is also a distributed algorithm in the above sense. The approach 
was extended by Gifford [5] and Skeen [lo] to allow nodes to cast more than one 
vote. In these weighted voting schemes, it was sufficient to obtain a majority of 
the votes to obtain mutual exclusion, not necessarily from a majority of the 
nodes. Garcia-Molina and Barbara then analyzed the relationship between 
weighted voting and sets of nodes with pairwise nonnull intersections [4]. These 
weighted voting schemes enjoy the same advantage as the protocol proposed in 
this paper, in that communication with all nodes in the system is not required. 
They are not distributed algorithms, however, because nodes with higher weights 
bear more responsibility to control mutual exclusion than others. In fact, if a 
particular node has a full weight and all others have no weight, the algorithm is 
reduced to a centralized control. 

The algorithm presented in this paper is a distributed algorithm and requires 
only 3fi messages per mutual exclusion: m messages to convey a request, 
fi messages to obtain permissions, and fi messages to release mutual exclu- 
sion. It can be proven that this number is optimal for distributed algorithms. 
The approach taken parallels the voting technique used in Thomas. It also uses 
deferral, the technique used in Ricart and Agrawala. An additional technique, 
relinquishment, is used, however, to avoid deadlocks. 

2. REQUEST RESOLUTION 

In distributed systems, each network node issues a mutual exclusion request at 
an arbitrary time. In order to arbitrate these requests, any pair of two requests 
must be known to one of the arbitrators. Since nodes themselves must serve as 
arbitrators, any pair of two requests must reach to a certain common node. If we 
assume that node i obtains a permission from each member of a subset Si of the 
nodes of the network to obtain mutual exclusion then there must exist at least 
one common node between a pair of Si and Sj for any i and j SO that the common 
node can serve as an arbitrator. Therefore, the Si’s must satisfy the pairwise 
nonnull intersection property. Assuming that the network consists of N nodes 
numbered from 1 to N, this nonnull intersection property is stated as follows: 

(a) For any combination of i and j, 1 % i, j I N, Si n Sj # 0. 

The request resolution rule then requires that when node i attempts to invoke 
mutual exclusion, it send a REQUEST message to every member of Si and obtain 
a permission from all of them. Since each member of Si serves as an arbitrator, 
the requesting node knows that it is the only node that has been granted mutual 
exclusion, when every member of Si returns a permission message. Node Si then 
proceeds to its critical section. This nonnull intersection property is a necessary 
condition for the Si’s SO that mutual exclusion requests can be resolved. In 
addition, the following properties are required or desirable for truly distributed 
algorithms: 

(b) Si, 1 5 i I N, always contains i. 
(c) The size of Si, ] Si ] , is K for any i. That is, 

I&I = I&I = l&l = ... = I&l = K. 
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(d) Any j, 1 5 j 5 N, is contained in the D Si’S, 1 5 i I N. 

Property (b) is included simply to reduce the number of messages to be sent and 
received by a node, respectively, because, if a requesting node i is itself a member 
of its own node subset Si, a permission from itself is obtained without a message 
transmission. Properties (c) and (d) are included to have a truly distributed 
algorithm. Property (c) implies that each node needs to send and receive the 
same number of messages to obtain mutual exclusion. Property (d), on the other 
hand, implies that each node serves as an arbitrator for the same number of 
nodes. That is, each node bears an equal amount of responsibility for mutual 
exclusion control. 

A centralized algorithm assigns a single node as a controller (arbitrator) for 
mutual exclusion management. It satisfies properties (a) and (c), where K = 1, 
but violates property (d). Ricart and Agrawala’s algorithm satisfies all of the 
above properties, where K = N and D = N. Thomas’s majority consensus 
algorithm can also satisfy all the above properties, where K = N and D = N. 
Weighted voting schemes satisfy property (a) but usually violate properties (c) 
and (d). 

3. THE CHOICE OF S’s 

The selection of Si’s is not unique. There exists a number of ways to select a set 
of Si’s that satisfies the above properties. From properties (b) and (d), each 
member of Si can be contained in (D - 1) other subsets. Therefore, the maximum 
number of subsets that satisfy property (a) is given by 

(D - 1)K + 1. 

Since N is desired to be set to this maximum number so that K is minimized for 
a given N, we have 

N = (D - l)K + 1. 

Furthermore, K = D must always hold, because N is the number of distinct 
members, which is given by KN/D, the total number of members divided by the 
number of duplications of each member. N is thus related to K by 

N = K(K - 1) + 1. 

The problem of finding a set of Si’s that satisfies these conditions is equivalent 
to finding a finite projective plane of N points. It is known that there exists a 
finite projective plane of order k if lz is a power pm, of a prime p [l]. This finite 
projective plane has k(k + 1) + 1 points. Hence, in our terms, a set of Si’s exists 
if (K - 1) is a power of a prime. For other values of lz, we can create a set of Si’s 
by relaxing conditions (c) and (d) to some extent. For values of N, which cannot 
be expressed as K(K - 1) + 1, we can also apply the same method to create a 
degenerated set of Si’s. The creation of Si’s is discussed in detail in Section 7. 
Here, we only show examples for K = 2,3,4 and 5 (Figure 1). 

From the above discussion, it is clear that K gives the optimal value for a given 
N when all the properties (a)-(d) are required. With a fractional error, we see 
that K = fi. 
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4. ALGORITHM 

Each node executes an identical algorithm. The algorithm is based on the fact 
that, if node i locks all members of Sip no other node can capture all its members 
because of property (a). Therefore, when it invokes mutual exclusion, node i tries 
to lock all members of Si. If it succeeds, it can enter its critical section. If it fails, 
it waits for all its member nodes to be freed, at which point it captures and locks 
them. It then enters its critical section. Since there is a danger of deadlock when 
more than one node simultaneously requests mutual exclusion, a node will yield 
to others if the priority of its request is lower than that of any other conflicting 
request. The request’s priority is determined by the sequence number (timestamp) 
of the request’s corresponding REQUEST message. A REQUEST with a smaller 
sequence number is given higher priority and is said to precede other REQUESTS 
with larger sequence numbers. If a newly arrived REQUEST at a member node 
precedes the current locking REQUEST, the node sends an INQUIRE message 
to the node originating the current locking REQUEST to inquire whether the 
originating node will really succeed in capturing all its members. The originating 
node will return a RELINQUISH message when it becomes ,apparent that the 
node will not be able to capture all its members. On the other hand, if the 
originating node has succeeded in capturing all its members, it will return a 
RELEASE message only after it has completed its critical section operation. 

The algorithm is now described below: 

(1) When node i invokes mutual exclusion, it sends a REQUEST message to every 
member of Si. Node i pretends to have received a REQUEST. The REQUEST message 
is given a sequence number greater than any REQUEST message sent, received, or 
observed at this node. 

(2) Upon receiving a REQUEST, a member node of Si marks itself locked for the 
REQUEST if it is not currently locked for another REQUEST, and then returns a 
LOCKED message to the requesting node i. If the node is locked for a REQUEST 
from another node, the REQUEST from node i is placed in the WAITING QUEUE 
of the node. (These REQUEST messages placed in the WAITING QUEUE are called 
outstanding REQUESTS.) It is then tested to determine whether the current locking 
REQUEST or any other outstanding REQUEST at the node precedes the received 
REQUEST. (See below for the definition of the locking REQUEST.) If so, a FAILED 
message is returned to node i. Otherwise, an INQUIRE message is sent to the node 
originating the current locking REQUEST to inquire whether this originating node 
has succeeded in locking all its members. If an INQUIRE has already been sent for a 
previous REQUEST and its reply message (either RELINQUISH or RELEASE) has 
not yet been received, it is not necessary to send in INQUIRE. REQUEST A is said 
to precede REQUEST B if (the sequence of number A < the sequence number of B) 
or ((the sequence of number A = the sequence number of 23) and (the node number 
of A < the node number of B)). Each node can be locked by only one REQUEST at a 
time, and this REQUEST is called the locking REQUEST. Any subsequent RE- 
QUESTS arrived at the node are placed in the WAITING QUEUE of the node in 
decreasing order of the precedence defined above. 

(3) When a node receives an INQUIRE message, it returns a RELINQUISH message if 
it knows that it will not succeed in locking all its members; that is, it has received a 
FAILED message from some of its members. By so doing, the node relinquishes its 
member node to a more preceding REQUEST. This breaks a circular locking, which 
is necessary to avoid deadlocks. The node cancels the LOCKED message previously 
received from the member node. When the node has succeeded in locking all its 
members and is in its critical section, it returns a RELEASE message, but only after 
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it has completed its critical section. If an INQUIRE message has arrived before it is 
known whether the node will succeed or fail to lock all its members, a reply is deferred 
until this becomes known. If an INQUIRE message has arrived after the node has 
sent a RELEASE message, it is simply ignored. 

(4) When a node receives a RELINQUISH message, it relieves itself of the current locking 
REQUEST and then locks itself for the most preceding REQUEST in the WAITING 
QUEUE. Thus, regardless of which REQUEST had caused the sending of an IN- 
QUIRE, the node is locked for the REQUEST that happens to be most preceding 
when a RELINQUISH message is received. The current locking REQUEST is placed 
in the WAITING QUEUE, whereas the most preceding REQUEST is removed from 
it. A LOCKED message is then returned to the node originating the new locking 
REQUEST. 

(5) If all members of Si have returned a LOCKED message, node i enters its critical 
section. 

(6) Upon completing the critical section, node i sends a RELEASE message to each 
member of Si. 

(7) When a node receives a RELEASE message, it relieves itself from the current locking 
REQUEST. It deletes this locking REQUEST and then relocks itself for the most 
preceding REQUEST in the WAITING QUEUE if the queue is not empty. A LOCKED 
message is returned to the node originating the new locking REQUEST. If the 
WAITING QUEUE is empty, the node marks itself unlocked. 

(8) The above steps (l)-(7) are repeated for each mutual exclusion request. 

5. AN EXAMPLE 

Imagine a 13-node network using this algorithm. Initially, the sequence number 
at each node is zero. 

Figure 2a shows a sequence of mutual exclusion invocations in which nodes 7, 
8, and 11 invoke mutual exclusion in the order below. They all send a REQUEST 
message with a sequence number 1 to their respective members. 

(1) Node 11 is the first to attempt mutual exclusion. Its REQUESTS have arrived at 
nodes 12 and 13 and have locked them, but its REQUEST to node 1 is still on its way. 

(2) Node 7 then invokes mutual exclusion. Its REQUESTS have arrived at nodes 2 and 
10 and have locked them but its REQUEST to node 13 is still on its way. 

(3) Node 8 then invokes mutual exclusion. It locks itself and sends a REQUEST to nodes 
1, 9, and 10 but fails to lock node 10 because node 10 has already been locked by a 
preceding REQUEST from node 7. 

(4) The REQUEST message originating at node 11 has finally arrived at node 1, while 
the REQUEST message from node 7 arrives at node 13. Node 1 then returns a 
FAILED, whereas node 13 sends an INQUIRE message to node 11. 

This sequence creates a situation where nodes 7, 8, and 11 circularly lock each 
other. Node 8 receives a FAILED message and cannot enter its critical section. 
Likewise, node 11 cannot enter its critical section because it receives a FAILED 
message from node 1. Node 7 still waits because it has not received a LOCKED 
from all its member nodes. 

When an INQUIRE message has been received at node 11, node 11 knows that 
it cannot enter its critical section and thus returns a RELINQUISH message to 
node 13. This will cause node 13 to be released for the most preceding REQUEST 
in its waiting queue, which is the REQUEST from node 7. This REQUEST then 
locks node 13 and returns a LOCKED to node 7. Node 7 then can enter its 
critical section (Figure 2b). 
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Upon completing the critical section, node 7 deletes its REQUEST from its 
member nodes by sending a RELEASE message. This will cause node 8 to 
successfully lock all its members and enter its critical section. Finally node 11 
completes its critical section. 

It is possible that a new REQUEST is initiated during the above process. 
Suppose that a REQUEST from node 3 has arrived at node 13 after the INQUIRE 
message was sent but before the RELINQUISH message from node 11 arrives at 
node 13. Since this REQUEST precedes any REQUEST at node 13, and since it 
is known that an INQUIRE was sent, the REQUEST waits for a RELINQUISH. 
When the RELINQUISH message is received at node 13, the REQUEST from 
node 3 locks node 13 instead of the REQUEST from node 7. Node 3 will then 
succeed in locking all its members when node 8 relinquishes itself to node 3. 

6. PROOF 

6.1 Mutual Exclusion 

Assume the contrary, that more than one node are simultaneously in the critical 
section. The following arguments show that this is not possible: 

(1) All the nodes in the critical section must have received a LOCKED message 
from all their respective member nodes (step 5). 

(2) Since a node in a critical section never releases its member nodes until it 
completes its critical section (step (6)), and since each member node returns 
a LOCKED message only when it locks itself for the corresponding RE- 
QUEST (steps (2) and (4)), there must be a node that is simultaneously 
locked for more than one REQUEST owing to property (a). 

(3) However, this contradicts the specification of the algorithm that allows only 
one REQUEST to lock a node at any instance (steps (2) and (4)). 

(4) Therefore, more than one node cannot simultaneously be in the critical 
section. 

6.2 Deadlock 

Assume that deadlock is possible. Then there must exist a circular waiting among 
the nodes requesting mutual exclusion. This is not possible, however, because 
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Fig. 3. A circular waiting. 1 waits for 2; 2 waits for 4 and 6; 4 waits for 1; 6 waits for 1. 

(1) Any sequence number/node number pair (timestamp) of a REQUEST is 
unique because the sequence number of each node is incremented for a new 
REQUEST and each node number is unique (step 1). Any set of sequence 
number/node number pairs can be uniquely ordered with the largest and the 
smallest. 

(2) Then, in this circular waiting, there must exist a node whose REQUEST’s 
timestamp is preceded by those of both of its adjacent nodes in the circular 
waiting. The removal of this preceded node leads to a break of the cycle. 

(3) Two adjacent competing nodes in the circular waiting have at least one node 
common as a member node due to property (a). Then at this common node, 
two REQUESTS can be ordered in terms of their timestamps (step 2). 

(4) If the preceding REQUEST cannot lock the node because the preceded node 
is currently locking, it causes an INQUIRE message to be sent to the node 
originating the preceded REQUEST (step 2). (Note that if a preceding 
REQUEST can always lock a node, there will not be any circular waiting.) 

(5) The node originating the preceded REQUEST will relinquish the completed 
member node by returning a RELINQUISH message if it knows that it will 
not succeed in locking all its members (step 3). By observation (2) above, 
there exists a node whose REQUEST’s timestamp is preceded by those of 
both of its adjacent nodes in the circular waiting. Since this node is in a 
circular waiting, one of its REQUESTS must have arrived at one of its 
member nodes later than a REQUEST from one of its adjacent nodes in the 
circular waiting. Therefore, the node must receive a FAILED message 
(step 2). The node then returns a RELINQUISH message. This breaks the 
circular waiting and the node that has received the RELINQUISH will 
succeed in locking all its member nodes (step 4). 

Example. Let us assume that all REQUESTS in Figure 3 have the same 
sequence number. Then the REQUEST from node 1 is most preceding. The 
circular waiting is broken because the REQUESTS from node 4 and 6 are preceded 
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by the REQUESTS from node 1 and thus their members are relinquished. This 
will allow node 2 to succeed in locking all its members and allow it to enter its 
critical section. 

6.3 Starvation 

The starvation of node i occurs when other preceding REQUESTS are continu- 
ously locking or waiting at a member of Si. In this case, a FAILED is returned 
to node i, which will wait for a LOCKED message. A LOCKED message will 
eventually be returned to node i from the member node when the REQUEST 
originating at node i becomes the most preceding outstanding REQUEST at this 
member node. This will occur after, at most, (K - 1) REQUESTS have been 
processed at the member node, because any subsequent REQUEST that arrives 
at the member node will have a sequence number larger than the current 
REQUEST originating at node i. Therefore, in a finite time, node i will succeed 
in locking this member node. Since this is true for every member node, node i 
will succeed in locking all its member nodes in a finite time. 

7. THE CREATION OF Si’S 

The choice of Si’s affects the number of messages required to create mutual 
exclusion. It is desirable to have Si’s that are symmetric and of which the size of 
each subset is minimum. Symmetry is required to have a truly distributed system, 
as discussed in Section 2. These two conditions are both satisfied when there 
exists a finite projective plane of N points. Although it is known that a finite 
projective plane of order k exists if k is a power of a prime, very little is known 
about general finite projective planes for other values of k. The Bruck-Ryser 
theorem [l] is the only result in this direction, and states that there exists no 
finite projective plane of order k if either k - 1 or k - 2 is divisible by 4 and if k 
cannot be expressed as the sum of two integral squares (k # a2 + b2 for a and b 
nonnegative integers). If a corresponding finite projective plane does not exist or 
if N is not expressed as K(K - 1) + 1, one or both of the above two conditions 
must be sacrificed. We show two methods that create a near-optimal set of Si’s. 

Method 1. Suppose that (K - 1) is not a power of a prime number. Then there 
may not exist a corresponding finite projective plane. However, we can create a 
degenerated set of Si’s for this value of K = L by the following method: 

(a) We first create a symmetric set of Si’s for M where (M - 1) is a power of a 
prime number and A4 is the smallest integer larger than L. In this set of Si’s 
for K = M, each component is contained in M subsets. 

(b) We then replace each component greater than N = L(L - 1) + 1 in this set 
of Si’s for K = M by a number smaller than or equal to N = L(L - 1) + 1. 
Then each component will be contained in L subsets in the resulting set of 
Si’s. We assume that this replacement is made by a different number each 
time. The resulting set of Si’s is not symmetric in the sense that the size of 
Si is not always L. 

The mutual exclusion algorithm using these Si’s produces a somewhat unbalanced 
performance for nodes because some node may have to send an extra message. 
But, on the average, the load of each node is balanced. Therefore, the number of 
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messages per mutual exclusion remains the same as that calculated in Section 3. 
The largest gap between L and M is only 2 for K I 20 (L = 15 and M = 17) and 
only 4 for K 5 50 (L = 34 and M = 38). 

When N cannot be expressed as K(K - 1) + 1, we can create a degenerate set 
of Si’s in a similar way. In order to obtain Si’s for N = 5, for instance, we first 
create a set of Si’s for M = 7 using the method described in 2.2 and then replace 
7 and 6 with 5 and 4, respectively, and remove S7 and Ss, which produces the 
following set Of Si’S: 

& = 11, 2, 31, 
s2 = (2, 4), 
s3 = (3, 5, 4), 
s4 = (1, 4, 51, 
s5 = (2, 5). 

Method 2. Consider a grid of L x L, and number the L2 grid points from 1 to 
L2. A subset Si is defined to be the set of grid points on the row or the column 
passing through point i. Then it is clear that Si II Sj # 0 for any i and j, 1 5 i, 
j I L2. The set of Si’s is symmetric in the sense that 1 Si 1 = 2L - 1 for any i and 
that any i is contained in (2L - 1) subsets. In this construction, 

(Sil=Z&V-1 for any i. 

Therefore, the number of messages per mutual exclusion is about twice that 
calculated in Section 3. 

If N is not a square of an integer, we can create a degenerate grid whose 
outermost row (and column, if necessary) is reduced in size. Any fractional row 
or column is completed by complementing its missing part from another row or 
column when Si’s are determined. 

8. MESSAGE TRAFFIC 

We discuss two cases separately. 

8.1 Under Light Demand 

When the demand is light and contention rarely occurs, one instance of mutual 
exclusion requires (K - 1) REQUEST messages and (K - 1) LOCKED messages 
to ensure that all members of Si have been locked, and (K - 1) RELEASE 
messages to clear the REQUESTS. A total of three (K - 1) messages are required. 
Table I shows the comparison with Ricart and Agrawala’s algorithm. It is seen 
that under light demand the proposed algorithm almost always requires fewer 
messages than Ricart and Agrawala’s algorithm. 

The above examples are for those values of K for which a finite projective 
plane exists. When a finite projective plane does not exist, some redundancy 
exists among Si’s and the number of messages required to create mutual exclusion 
increases accordingly. Such cases are shown in Table II, where the values are 
computed assuming that a mutual exclusion request is made uniformly from each 
node. The advantage of the proposed algorithm is apparent, even in these 
degenerate cases. 
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Table I 

Proposed Ricart and Agrawala’s 
N algorithm algorithm 

3(K=2) 3 4 
7(K=3) 6 12 

13 (K = 4) 9 24 
21 (K = 5) 12 40 

133 (K = 12) 33 264 
381 (K=20) 57 760 

Table II 

Proposed Ricart and Agrawala’s 
N algorithm algorithm 

5 4.8 8 
6 5.5 10 

10 8.1 18 

18 11.7 34 

8.2 Under Heavy Demand 

Under heavy demand, a new REQUEST will most likely fail to lock its destination 
node. Thus, we expect to have (K - 1) REQUEST messages, (K - 1) FAILED 
messages, (K - 1) LOCKED messages to obtain mutual exclusion, and (K - 1) 
RELEASE messages to release the REQUEST. A total of four (K - 1) messages 
are required per mutual exclusion. 

If a new REQUEST is initiated from a node that has neither requested mutual 
exclusion nor participated in the algorithm as a member node for a certain period, 
it will most likely precede other REQUESTS. It then causes an INQUIRE message 
to be sent, for which a RELINQUISH is returned. In this case, (K - 1) REQUEST 
messages, (K - 1) INQUIRE messages, (K - 1) RELINQUISH messages, and 
(K - 1) LOCKED messages are required to obtain mutual exclusion. Hence, five 
(K - 1) messages are altogether required per mutual exclusion. This is the worst 
case because a RELINQUISH message is not needed when the node is already 
in a critical section or is winning to obtain mutual exclusion. Furthermore, it is 
expected that under heavy demand almost all nodes participate in the algorithm 
as a requestor or a member node. 

9. NODE FAILURE 

It is important to consider node failures in distributed systems. Although’nodes 
can fail in many ways [7-91, only those failure nodes that stop functioning and 
cannot return messages are considered here. In such failures, all information 
kept in the failed nodes is lost. We assume that a node failure can be detected 
by another node and a failed node is removed from the system. A simple approach 
for node removal is to have another node to take over the role of the failed node. 
This corresponds to the degeneration described above and will cause the overtak- 
ing node to play a somewhat greater role. 
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Table III. A Comparison with Other Algorithms 

l 157 

Fully centralized 
algorithm Proposed algorithm Ricart and Agrawala’s 

(one control node) algorithm 

The number of nodes 1 m-1 N-l 
to which a RE- 
QUEST must be 
sent 

The number of nodes N 4% N 
about which each 
(control) node keeps 
dynamic information 

The number of nodes, N %m 1 
dynamic information 
about which is lost 
by a (control) node 
failure 

The number of nodes 0 45 N 
about which each 
(control) node keeps 
static information 

Removal of a (control) Needs a back-up Dynamically Dynamically 
node control node possible possible 

Overtaking by another Needs a back-up Dynamically Not necessary 
node control node possible 

In considering a node removal, we must consider the amount of information 
kept in and transferred between nodes that is necessary to execute a mutual 
exclusion algorithm. 

Table III summarizes for three algorithms, including a fully centralized algo- 
rithm. Thomas’s majority consensus algorithm [ll] is basically the same as 
Ricart and Agrawala’s algorithm. The fully centralized algorithm is executed by 
one control node that manages mutual exclusion. It requires only one REQUEST 
to be sent to the control node per mutual exclusion, whereas the other algorithms 
require (a - 1) and (N - 1) messages, respectively. This is a penalty that has 
to be paid to have a distributed algorithm. 

In order for any mutual exclusion algorithm to operate, each (control) node 
must have operational information, by dynamic and static. The dynamic infor- 
mation is information about messages and the status of the related nodes, whereas 
the static information is information that will never be changed once initialized, 
such as the total number of nodes and the node numbers. A node removal affects 
both the dynamic and static information. In case of the dynamic information, a 
removal of a (control) node does not cause a loss of the dynamic information if 
the dynamic information is duplicated in other nodes. A failed node can simply 
be removed. However, the static information in each (control) node must be 
modified. In Ricart and Agrawala’s algorithm, a node removal causes no loss of 
dynamic information but requires a modification of the static information in 
each node. This requires O(N) messages. On the other hand, in the fully 
centralized algorithm, all dynamic information is lost by the removal of the 
control node, whereas no static information is lost. A backup controller is required 
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to take over the failed controller and O(N) messages are required to regain 
dynamic information. In the algorithm proposed in this paper, dynamic infor- 
mation about (fi - 1) nodes is lost by a removal of the failed node. This is the 
reason why another node should logically take over the role of the failed node. 
Any other node can logically take that role over because each node executes an 
identical algorithm. The lost dynamic information can be regained by O(a), 
instead of O(N), messages. The static information also needs to be modified in 
only (fi - 1) nodes. Therefore, it is generally expected that the proposed 
algorithm requires fewer messages than the other two algorithms to remove a 
node despite the fact that some dynamic information is lost. This is summarized 
in Table III. 

10. VARIATIONS 

The algorithm presented in Section 4 simultaneously sends a REQUEST to each 
member node and allows fully parallel operation. Thus, the delay incurred in 
running the algorithm is the sum of the time it takes to send a REQUEST and 
receive a LOCKED message. This is the minimum delay required to run any 
mutual exclusion algorithm. Ricart and Agrawala’s and Thomas’s algorithms also 
basically have the same delay. If a greater delay is tolerated, REQUEST messages 
can be sent in a systemwise prespecified order, one by one, only after a LOCKED 
message is returned for the previous REQUEST. This will simplify the algorithm 
and requires only two (K - 1) messages to create an instance of mutual exclusion. 
This can further be reduced to K message passes by cyclically passing a RE- 
QUEST among the member nodes. In either method, additional (K - 1) messages 
or message passes are required to clear the REQUESTS. 

Il. CONCLUSIONS 

A distributed algorithm that creates mutual exclusion using c fi messages, where 
c is a constant between 3 and 5, has been presented. The algorithm is symmetric 
and allows fully parallel operation. It also allows a node removal. The proposed 
algorithm is optimal in terms of the number of messages used to create mutual 
exclusion among fully distributed algorithms, where the term distributed is used 
here to mean that each node serves as an arbitrator for the same number of 
nodes. 

Several mutual exclusion algorithms for distributed systems are available [3- 
6,8-111, as well as a number of their variations. These algorithms vary in many 
respects, including the degree of distribution of control, the degree of parallel 
operation, traffic intensity, the delay incurred, applicable network topologies, 
and reliability. In applying these algorithms to a real system, a suitable algorithm 
will be selected depending on such factors as network topology, network size, and 
performance, reliability, and extensibility requirements. 
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