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Abstract Impossibility results and best-case lower bounds
are proved for the number of message delays and the number
of processes required to reach agreement in an asynchronous
consensus algorithm that tolerates non-Byzantine failures.
General algorithms exist that achieve these lower bounds in
the normal case, when the response time of non-faulty pro-
cesses and the transmission delay of messages they send to
one another are bounded. Our theorems allow algorithms to
do better in certain exceptional cases, and such algorithms
are presented. Two of these exceptional algorithms may be
of practical interest.

Keywords Consensus · Fault tolerance · Distributed
algorithms · Paxos

1 Introduction

In an asynchronous system, how many processors are
needed to achieve consensus in the presence of f (non-
Byzantine) faults? And how fast can they achieve it? The
answers are known: 2 f +1 processors and two message de-
lays [2]. These are correct answers, but to the wrong ques-
tions. The traditional definition of consensus hides one mes-
sage that occurs in most applications—namely, the initial
message from a client to the processes implementing the
consensus algorithm.

Here, we answer the questions How many processes?
and How many message delays? for a more pertinent defini-
tion of consensus. For an n-process algorithm that can reach
consensus even if f processes fail, the approximate answers
are:

• Consensus is possible only if n > 2 f .
• In the absence of conflicting requests from different

clients, consensus can be achieved in two message de-
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lays despite the failure of e processes, for 0 ≤ e ≤ f ,
only if n > 2e+ f .

• Consensus cannot be achieved in fewer than two mes-
sage delays, nor can it be guaranteed in two message de-
lays if there are conflicting user requests.

Each of these answers is false in certain exceptional cases.
For example, consensus can be achieved in two message
delays in the absence of failure despite conflict if the only
clients are the processes that execute the consensus algo-
rithm.

Our exact answers to these questions consist of several
precisely stated and rigorously proved lower-bound results.
Algorithms exist that show the bounds to be tight. For the
normal cases, those algorithms appear elsewhere. We pro-
vide algorithms for the exceptional cases. Two of those al-
gorithms may be useful in practice.

We assume only non-Byzantine (omission) failures. This
means that a process can fail by stopping, not by perform-
ing incorrect actions; and a message can be lost or delivered
multiple times, but cannot be (undetectably) corrupted.

Approximate versions of extensions to most of these
results were previously announced [10]. The extensions
treated Byzantine as well as non-Byzantine failures. We
would assert that precise statements of the extended versions
and their proofs will appear, but experience has shown the
foolhardiness of such a prediction.

1.1 Traditional consensus

We begin by examining the traditional consensus problem.
One assumes a collection of n processes, each of which can
propose a value. The problem is to find an algorithm for
choosing a value subject to the following conditions, where
f is the number of faults to be tolerated.

Nontriviality Only a proposed value may be chosen.
Consistency Only a single value may be chosen.
Progress If at least n − f processes are nonfaulty, then a

value must be chosen and must be learned by every non-
faulty process.
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The well-known result of Fischer, Lynch, and Paterson
(FLP) [5] implies that an asynchronous algorithm cannot
solve this problem in the presence of even a single fault.
But most real systems are synchronous at least most of the
time, meaning that nonfaulty processes can usually perform
actions and communicate with one another in a bounded
length of time. An asynchronous consensus algorithm is re-
quired to maintain nontriviality and consistency in the pres-
ence of any non-Byzantine failures; progress need be guar-
anteed only under the assumption that the system is eventu-
ally synchronous for a long enough period of time [4].

The cost of consensus we consider is the number of mes-
sage delays between the proposal of a value and the learning
of a value. If local computation were instantaneous and mes-
sages were received exactly one second after they were sent,
then this would be the number of seconds between the first
proposal of a value and the learning of a value by every non-
faulty process. The general definition of the number of mes-
sage delays in an asynchronous system is fairly obvious [6].
The FLP result implies that the worst-case cost for achiev-
ing consensus is unbounded. Fortunately, it is the best-case
cost that is interesting. A good algorithm will achieve the
best-case cost in the normal case of synchronous behavior.

The cost of a consensus algorithm is important only
when a system executes multiple instances of the algorithm.
If a system executed the algorithm only a few times—for ex-
ample, during start-up—the algorithm’s efficiency wouldn’t
matter. In the state-machine approach [6], a sequence of in-
stances of a consensus algorithm are used to choose the se-
quence of commands.

Perhaps the most widely-known consensus algorithm is
the Paxos algorithm [3, 8, 9]. It has a preliminary section
consisting of the election of a leader and the leader’s ex-
ecution of phase 1 for a new ballot number. This phase is
executed only when a leader fails, and it can be executed si-
multaneously for all instances of the algorithm. The cost of
the preliminary section can therefore be ignored. The sig-
nificant cost of the Paxos algorithm is that of phase 2. In
that phase, the leader proposes a value by sending phase 2a
messages with that value to all the processes, which respond
with phase 2b messages. The leader learns that the value
has been chosen when it receives phase 2b messages from a
majority of the processes. Hence, if a majority of processes
are nonfaulty, then the leader learns the chosen value in two
message delays. By having each process send its phase 2b
message to every other process, every nonfaulty process can
also learn the chosen value in two message delays. Paxos is
therefore optimal for solving the traditional consensus prob-
lem. But it is not necessarily optimal for implementing a
system that uses consensus.

1.2 Agents

In the state-machine approach, a set of servers execute a se-
quence of instances of a consensus algorithm to choose a
sequence of client commands. In Paxos, a client sends its

command to the leader, and the leader proposes that com-
mand in the next instance of the Paxos consensus algorithm.
By considering only the cost of the consensus algorithm, we
are ignoring the message sent by the client to the leader. In
other applications of consensus as well, the proposed values
need not be generated by the processes that choose a value.
So, instead of defining consensus in terms of a single set of
processes, we define it more generally in terms of three fixed
sets of agents:

Proposers A proposer can propose a value.
Acceptors The acceptors cooperate to choose a value.
Learners A learner can learn what value has been chosen.

These sets need not be disjoint. For example, an agent might
be both a proposer and an acceptor. The traditional state-
ment of consensus corresponds to the case in which these
three sets are equal. This situation represented the class of
process-control systems that originally inspired the consen-
sus problem [14]. However, it is not typical of applications
of consensus in asynchronous systems. For example, a state-
machine implementation that can tolerate the failure of f
computers needs only f + 1 copies of the machine’s state.
However, 2 f + 1 computers are required to achieve consen-
sus on the state-machine commands. A fault-tolerant state-
machine implementation requires 2 f + 1 computers to act
as acceptors, but only the f + 1 of them that maintain the
state-machine’s state have to be learners.

By choosing what computers play what roles, we can
make tradeoffs between time and message complexity. For
example, by letting clients as well as servers be learners,
we can reduce the number of message delays between when
the client issues a command and when it receives a response.
However, this reduction comes at the cost of extra messages.

We now generalize the consensus problem to a system of
agents performing these three roles. The generalizations of
nontriviality and consistency are obvious:

Nontriviality Only a proposed value may be learned.
Consistency Any two values that are learned must be equal.

The generalization of progress is less obvious. We want our
definition of consensus to apply to client/server systems, in
which clients are not necessarily reliable. For example, a
client might issue a command and then “disappear”. Since
proposer and learner are roles that might be assigned to a
client, we cannot require that they not fail. We can make re-
liability assumptions only about acceptors. Let n be the total
number of acceptors, which we assume to be finite. A con-
sensus algorithm is said to be f -fault tolerant iff only n− f
nonfaulty acceptors are needed to ensure that a value is cho-
sen. (Remember that a consensus algorithm must maintain
nontriviality and consistency despite any number of failures;
f -fault tolerance means only that it must make progress if
no more than f acceptors have failed.) However, no value
can be chosen if none is proposed. Moreover, we cannot ex-
pect the acceptors to find out about a proposal if the pro-
poser failed immediately after issuing it. So, we can require
a value to be chosen only if there is a proposal issued by
a nonfaulty proposer. We naturally require only nonfaulty
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learners to learn. This all leads to the following requirement
for a consensus algorithm that tolerates f faults:

Progress For any proposer p and learner l, if p, l, and n− f
acceptors are nonfaulty and p proposes a value, then l
must learn a value.

As in the traditional consensus problem, progress can be
guaranteed only under some synchrony assumption. Lower
bounds applying only to purely asynchronous algorithms
that guarantee progress would therefore be vacuous. How-
ever, we prove lower bounds for any algorithm that can
make progress. These bounds apply a fortiori to any algo-
rithm that, under some other assumption such as eventual
synchrony [4], must make progress.

1.3 Results

We now sketch our lower-bound results for asynchronous
consensus algorithms. The exposition here is very informal
and not completely accurate. It is only an intuitive introduc-
tion to our results, which are stated more precisely in Sect. 2.
Our first two theorems were announced previously without
proof [10].

Consensus becomes trivial if there is only one proposer
or one learner. (In either case, a proposer can simply send
its proposal directly to a learner, which learns the first pro-
posal it receives.) So, we assume that there are at least two
proposers and two learners.

A quorum is a set Q consisting of enough acceptors to
choose a value. Our first result is the following theorem
about the size of quorums. Its anomalous case, as well as
the exceptional cases of other theorems, are described in the
precise statements of the theorems in Sect. 2.

Theorem (Acceptor Lower Bound) For any consistent
asynchronous algorithm with n acceptors, if any set of n− f
acceptors is a quorum then n > 2 f , except in one anomalous
case with exactly three agents in which n = 2 and f = 1.

For Paxos and most of the asynchronous consensus algo-
rithms that have been proposed, a quorum consists of any
majority of the servers. It is therefore easy to see that the ac-
ceptor lower bound is tight for the normal case. Section 3.1
gives an algorithm that works in the anomalous case.

An execution of a consensus algorithm is said to be fast-
learning iff there is at most a two-message delay between the
proposal of a value and the learning of the value. The FLP re-
sult implies that an asynchronous consensus algorithm must
have non-terminating executions, so no algorithm can guar-
antee learning in any fixed number of message delays. The
best we can hope for a fast-learning asynchronous algorithm
is that it is fast for certain “good” executions, in which mes-
sages are delivered in a timely fashion. Our lower bound for
fast learning assumes only that fast learning is possible.

It isn’t hard to find an algorithm that allows fast learn-
ing for a single proposer. In particular, the Paxos algorithm
allows fast learning of proposals issued by the leader. We

therefore consider algorithms that are fast for at least two
proposers. We define a set of acceptors to be fast-accepting
for a proposer p if it allows p’s proposals to be learned
quickly by any learner. (Having a hypothesis that allows
rather than requires fast learning makes our lower-bound re-
sult stronger.) For an algorithm with n acceptors to tolerate
f faults, every set of n− f acceptors should be a quorum.
However, we do not require every set of n− f acceptors to be
fast-accepting. Instead, we consider algorithms that are fast-
learning when there are at most e faulty acceptors, where
0 ≤ e ≤ f . If e < f , such an algorithm may slow down when
e+1 failures have occurred. Our second result is:

Theorem (Fast Learning) For any asynchronous consen-
sus algorithm with n acceptors, and any e and f with e ≤ f
and f > 0, if any set of n− f acceptors is a quorum and
there are two proposers for which any set of n− e acceptors
is fast-accepting, then n > 2e+ f , except in one special case.

Fast Paxos, a variant of Paxos, achieves this lower
bound [12]. The basic idea behind Fast Paxos was originally
observed by Brasileior et al. [1]. The Generic Broadcast al-
gorithm of Pedone and Schiper [13] is a fast-learning algo-
rithm for the case e = f .

The bound for the normal case is therefore tight. The
special case is described in Sect. 2.3, and Sect. 3.2.1 gives a
fast-learning algorithm for it.

Two message delays is a best-case lower bound on learn-
ing for a general algorithm. It is achieved by Fast Paxos
only in the absence of collisions, where a collision occurs
when two proposers concurrently propose different values.
The Collision-Fast Learning Theorem stated in Sect. 2.4
asserts that no general consensus algorithm can be fast-
learning in the presence of collisions. However, there are
two potentially useful cases in which fast learning is pos-
sible despite collisions. Algorithms for those cases are given
in Sect. 3.2.2.

We have stated that two message delays is a lower bound
on the time to reach consensus. That is not quite true. We de-
fine hyperfast learning to mean learning within one message
delay. It is not hard to see that no algorithm can provide hy-
perfast learning for two different proposers. However, there
are certain special cases in which hyperfast learning for a
single proposer is possible. The Hyperfast Learning theorem
of Sect. 2.5 enumerates those cases, and Sect. 3.2.3 provides
the corresponding hyperfast-learning algorithms.

1.4 Proofs

It is not hard to write convincing informal proofs of our the-
orems. Nor is it hard to write such proofs for incorrect ver-
sions of the theorems. Since the exceptional cases of the the-
orems lead to algorithms that may be interesting, we feel it
is important to ensure that we have correctly characterized
those cases. We would have no confidence in the correctness
of our results had we not written very detailed proofs. Read-
ers should be skeptical of results such as ours that are not
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accompanied by rigorous proofs. However, such proofs may
not provide an intuitive understanding of why the results are
true. We therefore give proof sketches in the main text and
rigorous proofs in Sect. A of the Appendix. Although the
proofs in the appendix are long and somewhat tedious, their
hierarchical structure makes them easy to check.

2 Theorems

We have tried to make our definitions of an asynchronous
consensus algorithm and of fast learning as general as pos-
sible. Indeed, they allow round-based algorithms in which
values are proposed only in the first round and any message
sent in one round is either lost or received by the next round.
However, we cannot rule out the possibility that our defini-
tions are too restrictive and are not satisfied by algorithms
that are, in a practical sense, asynchronous or fast-learning.
It is therefore important that we state our results very pre-
cisely, making it clear exactly what kinds of algorithms they
show to be impossible. In this section, our definitions and
theorems are stated rigorously but informally. Section B of
the Appendix expresses them formally in TLA+ [11].

We are assuming that the set of acceptors is finite. As we
remarked above, consensus is trivial with a single proposer
or a single learner. Consensus is also trivial if only a single
value may be proposed. So, we assume once and for all:

Assumption (Agent) The set of acceptors is finite, and
there are at least two proposers and two learners.

Assumption (Value) There are at least two proposable val-
ues.

We let n be the number of acceptors, and we define an agent
to be a proposer, a learner, or an acceptor.

2.1 Scenarios and algorithms

To state theorems about consensus algorithms, we must de-
fine what an algorithm is. We represent a possible execution
of an algorithm by a set of events. An algorithm is then de-
scribed by a set of sets of events, representing all its possible
partial executions. We now define this precisely.

We begin by defining what an event is. We assume that
the events performed by a single agent are totally ordered.
(Events performed concurrently by a single agent can be
ordered arbitrarily.) So an event e specifies an agent eagent

and a positive integer enum, indicating that e is the enum
th

event performed by eagent . An event can be performed either
spontaneously or upon receipt of a message. For a message-
receiving event e, we let ercvd be a triple 〈m, a, i〉, indicating
that the event was triggered by the receipt of a message m
sent by the ith event of agent a. For simplicity, we assume
that each event e sends exactly one message emsg, which can
be received by any agent (including itself). The sending of
a possibly empty set M of messages can be modeled by
letting emsg equal M and having an event that receives M

ignore any of its elements not meant for the receiver. Since
we are concerned with when learning occurs and not with
termination, we don’t care if an agent ever stops sending
messages.

We now define a scenario to be a set of events that could
conceivably be generated by a single (possibly partial) exe-
cution of some algorithm. But first, for any set S of events,
we define the precedence relation �S on S to be the tran-
sitive closure of the relation → such that d → e iff either
(i) dagent = eagent and dnum ≤ enum or (ii) e is a message-
receiving event such that ercvd = 〈dmsg, dagent , dnum〉. (This is
the reflexive form of the usual precedence relation for events
in a distributed system [6].) A scenario is then defined as fol-
lows.

Definition (Scenario) A scenario S is a set of events such
that

• For any agent a, the set of events in S performed by a
consists of ka events numbered from 1 through ka, for
some natural number ka.

• For every message-receiving event e in S, there ex-
ists an event d in S different from e such that ercvd =
〈dmsg, dagent , dnum〉.

• �S is a partial order on S.

Since �S is defined to be transitively closed, the last require-
ment asserts that �S has no cycles, meaning that d �S e and
e �S d imply d = e, for all d and e in S. The relation �S
describes causality, d �S e holding for d �= e iff it is possible
for event d to causally influence event e. A cycle therefore
cannot occur if S represents a possible partial execution of
an algorithm.

A prefix of a scenario T consists of a set of events in T
that precede all other events in T . The precise definition is:

Definition (Prefix) A subset S of a scenario T is a prefix
of T , written S � T , iff for any events d in T and e in S, if
d �T e then d is in S.

It is easy to see that any prefix of a scenario is also a scenario.
An algorithm is defined to be any non-empty set of sce-

narios. Our results apply to asynchronous algorithms. How-
ever, our definition of an asynchronous algorithm is very
weak, allowing algorithms that assume a great deal of syn-
chrony. Our basic assumption is that whether or not the al-
gorithm can perform an event e may depend only on events
that causally precede e. For example, our definition includes
algorithms that assume agents have perfectly synchronized
clocks and point-to-point communication links that deliver
messages with a known delay, but that allow agents and
communication links to fail at any time. Our precise defi-
nition is as follows, where Agents(S) is the set of all agents
that perform events in the set S of events, and A\B is the
subset of the set A consisting of all elements not in the set B.

Definition (Asynchronous Algorithm) An asynchronous
algorithm Alg is a set of scenarios such that:

A1. Every prefix of a scenario in Alg is in Alg.
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[The occurrence of an event d in the prefix cannot depend on
whether an event e not in the prefix occurs, because e cannot
causally effect d.]

A2. If T and U are scenarios of Alg and S is a prefix of both
T and U such that Agents(T \S) and Agents(U \S) are
disjoint sets, then T ∪U is a scenario of Alg.
[The assumptions about S, T , and U imply that T ∪U is a sce-
nario. The sets of events T \S and U \S both represent contin-
uations of S that are allowed by the algorithm. Each continua-
tion is performed by agents that have no way of knowing what
the other’s agents are doing. Hence the algorithm must allow
both continuations to be performed, producing the execution de-
scribed by T ∪U .]

Letting S be the empty scenario (the one containing no
events), we deduce from A1 and A2 the following:

Lemma (Scenario Union) For any scenarios T and U of
an asynchronous algorithm Alg such that Agents(T ) and
Agents(U) are disjoint, T ∪U is also a scenario of Alg.

We now assume that there are proposing and learning events.
A proposing event e is one in which proposer eagent proposes
a value eproposed . A learning event e is one in which learner
eagent learns a value elearned . Nontriviality and consistency
are defined by:

Definition (Nontriviality) An algorithm Alg is nontrivial
iff, for every scenario S in Alg and any learning event e in S,
there is a proposing event d in S with dproposed = elearned .

Definition (Consistency) An algorithm Alg is consistent
iff, for every scenario S in Alg, if d and e are learning events
in S, then dlearned = elearned .

We define a consensus algorithm to be an algorithm that is
nontrivial and consistent. (Since our lower-bound results are
about what can happen rather than what must happen, we do
not require a progress property.)

2.2 The lower bound on acceptors

A quorum is a set of acceptors that is large enough to choose
a value, regardless of what steps of the algorithm have been
performed so far. We formally define quorums in Sect. 2.3.
Here, we define an accepting set to be one large enough that
it can choose a value starting ab initio. A quorum is therefore
an accepting set.

Definition (Accepting Set) A set Q of acceptors is accept-
ing for a proposer p in algorithm Alg iff for every value v
and learner l, there is a scenario S of Alg with Agents(S) ⊆
{p, l}∪Q such that S has an event in which p proposes v
and an event in which l learns v.

Our Acceptor Lower Bound Theorem assumes that any set
with at least some minimum number of acceptors is an ac-
cepting set. Algorithms such as Paxos allow more general
accepting sets, so the following result is of interest. It im-
plies that for any algorithm that works with arbitrary sets of

proposers and acceptors, no two accepting sets can be dis-
joint.

Lemma (Accepting) For any consistent asynchronous al-
gorithm Alg, any proposers p1 and p2, any learners l1 and
l2, and any sets Q1 and Q2 of acceptors such that each
Qi is an accepting set for pi, the sets {p1, l1} ∪ Q1 and
{p2, l2}∪Q2 are not disjoint.

Proof Sketch Choose two different proposable values v1 and
v2. For each i, since Qi is an accepting set for pi, there ex-
ists a scenario Si of Alg with agents {pi, li}∪Qi in which
li learns vi. If the {pi, li}∪Qi were disjoint, then the Sce-
nario Union Lemma (Sect. 2.1) would imply that S1 ∪ S2 is
a scenario, contradicting consistency. �

Our first lower bound is a direct corollary of the Accepting
Lemma.

Theorem (Acceptor Lower Bound) For any natural num-
ber f with f ≤ n and any consistent asynchronous algorithm
Alg, if any set of n− f acceptors is an accepting set in Alg
for every proposer, then either
a. n > 2 f , or
b. f = 1 and there are three agents a1, a2, and a3 such that

{a1, a2} is the set of acceptors, {a1, a3} is the set of pro-
posers, and {a2, a3} is the set of learners.

Proof Sketch We assume that n ≤ 2 f and every set of n− f
acceptors is an accepting set for every proposer, and we ob-
tain a contradiction to the Accepting Lemma except if case
b holds. One can show that n ≤ 2 f implies n− f ≤ �n/2�.
Therefore, there exist disjoint sets Q1 and Q2 that each con-
tain n − f acceptors and are thus accepting sets for every
proposer.

The Agent and Value Assumptions imply that there are
proposers p1 and p2 and learners l1 and l2 such that the
sets {p1, l1} and {p2, l2} are disjoint. Since Q1 and Q2 are
disjoint, we get the required contradiction to the Accept-
ing Lemma if we show the existence of such pi and li with
{p1, l1} and Q2 disjoint and {p2, l2} and Q1 disjoint. This is
trivial to do if the pi and li can be chosen not to be acceptors,
and it is not hard to do if n ≥ 4. Showing that such pi and
li exist when n < 4, except in case b, requires a complicated
case analysis. �

Section 3.1 below gives an algorithm for the anomalous
case b. This case is of no practical interest, being just a weird
consequence of defining consensus in terms of proposers,
learners, and acceptors.

2.3 Fast learning

Before stating our results about fast learning, we explain
what it means. We define a source of a scenario S to be a
minimal event in the ordering �S, which is an event e in S
such that d �S e implies d = e, for any event d in S. We de-
fine the depth of an event in a scenario to be the number of
message delays before the execution of that event:

Rodrigo Santamaría
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Definition (Event Depth) The depth of an event e in a sce-
nario S equals 0 if e is a source of S, otherwise it equals the
maximum of (i) the depths of all events d with dagent = eagent
and dnum < enum and (ii) if e is an event that receives a mes-
sage sent by event d, then 1 plus the depth of d.

The depth of a scenario is defined to be the maximum of the
depths of its events.

As we observed above, no algorithm can always achieve
fast learning. However, we are interested only in whether an
algorithm allows fast learning. We define a set M of accep-
tors to be fast-accepting for a proposer p if any learner can
learn a proposal of p in two message delays by communi-
cating only with p and the acceptors in M. The nonobvious
aspect of the definition is that we require p’s proposal to be
the learning scenario’s only source event. This requirement
may seem too restrictive because it rules out algorithms like
Paxos that can perform preliminary actions before proposals
are issued. However, we can consider such an algorithm to
begin after the execution of those preliminary actions. What
we rule out are algorithms that “cheat” by restricting what
proposals can be learned fast. For example, Paxos can be
modified to be fast-learning for a single value that is nonde-
terministically selected in advance by the leader. This algo-
rithm has a scenario in which any proposed value is learned
quickly—namely, one in which the leader happened to se-
lect that value in advance. We are not ruling out “secondary”
proposals issued in response to a message from some other
agent. We simply do not consider the learning of a value
proposed in this way to be fast.

Definition (Fast Accepting) A set M of acceptors is fast-
accepting for a proposer p in algorithm Alg iff for every
proposable value v and learner l, there is a scenario S of Alg
with Agents(S) ⊆ {p, l}∪M such that S has depth at most
2, has as its only source an event in which p proposes v, and
contains an event in which l learns v.

Our lower bound on fast learning assumes that a quorum
is not just an accepting set, but that it is able to choose a
value regardless of what steps of the algorithm have been
performed so far. Stated in terms of learners, a quorum Q
should be able to tell any learner l what value is chosen.
Since nontriviality implies that a value can be chosen only if
one is proposed, some proposer p may be needed to propose
a value for l to learn.

Definition (Quorum) A set Q of acceptors is a quorum for
an algorithm Alg iff it is an accepting set in Alg for every
proposer and, for every proposer p, learner l, and scenario
S of Alg, there exists a scenario T of Alg such that (i) S
is a prefix of T , (ii) Agents(T \S) ⊆ {p, l}∪Q, and (iii) T
contains a learning event of l.

The lower bound on fast learning is proved with the follow-
ing obscure technical lemma. The best way to understand the
lemma is to consider what it means for a general algorithm
that works with any sets of proposers and learners. In this
case, we can assume that proposers, learners, and acceptors
are disjoint sets of agents, and that there are at least three

learners and three acceptors. The lemma then implies that
the intersection any quorum with any two sets that are fast-
accepting for different proposers must be non-empty. This is
precisely the condition on quorums and fast-accepting sets
required by the Fast Paxos algorithm.

Lemma (Fast Accepting) For any consistent asynchronous
algorithm Alg, if there exist proposers p1, p2, and pq, learn-
ers l1, l2 and lq, fast-accepting sets M1 for p1 and M2 for p2
in Alg, and a quorum Q for Alg such that

• p1 �= p2
• p1 /∈ M2 and p2 /∈ M1
• l1 /∈ {p2, pq, lq}∪ (M2 \M1)∪Q
• l2 /∈ {p1, pq, lq}∪ (M1 \M2)∪Q
• {pq, lq}∩M1 ∩M2 is empty

then M1 ∩M2 ∩Q is nonempty.

Proof Sketch We assume that M1 ∩M2 ∩Q is empty and ob-
tain a contradiction. Let v1 and v2 be two different propos-
able values. Since each Mi is a fast-accepting set for pi, there
exists a scenario T i executed by the agents in {pi, li}∪Mi in
which li learns vi within two message delays. Scenario T i
begins with pi proposing vi and sending “round 1” messages
to li and the acceptors in Mi; the acceptors in Mi can then
send “round 2” messages to li. Upon receipt of the rounds
1 and 2 messages sent to it, li learns vi. We can assume that
only these round 1 and 2 messages are received in T i, any
other messages sent having been lost.

We will obtain a contradiction by constructing an initial
scenario that can be completed to either T 1 or T 2 by agents
not in {pq, lq} ∪ Q. Since Q is a quorum, the agents in
{pq, lq} ∪Q must be able to complete this initial scenario
to one in which lq learns a value. However, whatever value
lq learns, agents not in {pq, lq} ∪ Q could execute the
remaining actions of one of the T i in which the value vi that
is learned is different from the value learned by lq. This
contradicts the assumption that the algorithm is consistent.

Remark: An algorithm that preserves consistency cannot
allow a scenario to contain all the events of both T 1 and
T 2. It prevents this by not allowing acceptors in M1 ∩M2
to perform events from both scenarios. It is those acceptors
that can determine whether T 1 or T 2 occurred. In the
fast-learning scenarios T i, the acceptors in M1 ∩ M2 have
no time to guarantee that other acceptors know in which
scenario they are participating before the messages are sent
that allow li to learn vi. The assumption that M1 ∩M2 ∩Q is
empty means that none of the acceptors that know whether
T 1 or T 2 occurred are in Q. End of Remark

To construct the necessary initial scenario, let Ui be the
prefix of T i consisting of all its events except the learning
event of li and the events of acceptors in M1 ∩M2. A careful
analysis shows that the hypotheses imply that U1 and U2 are
performed by disjoint sets of agents, so the Scenario Union
Lemma implies that U1 ∪U2 is a scenario of the algorithm.
The hypotheses also imply that U1 ∪U2 can be completed
to a scenario containing all the actions of either T 1 or T 2
by adding events performed by agents not in {pq, lq} ∪Q.
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Hence, U1 ∪U2 is the initial scenario that provides the re-
quired contradiction. �

The Paxos algorithm is fast-accepting for a single
proposer—namely, the initial leader. Our lower bound on
fast learning is for an algorithm that is fast-accepting for at
least two different proposers. Its hypothesis asserts that ev-
ery set of n− e acceptors is fast-accepting and every set of
n− f acceptors is a quorum. By the Fast-Accepting Lemma,
we expect this to be possible only for values of n, e, and f
satisfying the following condition: every two sets of n− e
acceptors and every set of n− f acceptors have a nonempty
intersection. Simple reasoning about finite sets shows that
this condition is equivalent to n > 2e+ f , which is our basic
lower bound. However, there is one weird case in which this
bound does not apply.

To rule out other uninteresting special cases, we assume
e ≤ f even though that assumption is not necessary to prove
our basic lower bound. (In fact, Fast Paxos works for arbi-
trary e and f with n > 2e + f .) However, the case f < e,
where the algorithm allows fast progress with fewer pro-
cesses than are required to ensure eventual progress, seems
to be of no practical interest. We also rule out the uninterest-
ing case of f = 0 (no fault tolerance). Fast learning is eas-
ily achieved in this case by letting one particular acceptor
choose the value.

Theorem (Fast Learning) For any natural numbers e and
f with f > 0 and e ≤ f ≤ n, and for any asynchronous con-
sensus algorithm Alg, if every set of n− f acceptors is a quo-
rum for Alg and every set of n−e acceptors is fast-accepting
in Alg for two distinct proposers p1 and p2, then n > 2e+ f
or the set of learners equals {p1, p2}.

Proof Sketch We assume that the conclusion of the theorem
is false and obtain a contradiction. The obvious approach
is to construct proposers p1, p2, and pq, learners l1, l2, and
lq, and sets M1, M2, and Q of acceptors that contradict the
Fast Accepting Lemma. The assumption that the conclusion
is false implies n ≤ 2e+ f , from which we deduce the exis-
tence of the sets M1 and M2 with n− e acceptors each and
the set Q with n− f acceptors such that M1 ∩M2 ∩Q empty.
A careful analysis shows that we can also find the necessary
proposers and learners if n > 2 f . By the Acceptor Lower
Bound Theorem, this yields the desired contradiction except
in the anomalous three-agent case b of that theorem. We ob-
tain a contradiction in this anomalous case by constructing
the same sort of scenarios used in the proof of the Fast Ac-
cepting Lemma. (We could strengthen the lemma to handle
the anomalous case as well, but it seems easier to consider
that case separately rather than complicating the proof of the
lemma.) �

2.4 Collision-fast learning

As explained above, Fast Paxos is fast-learning only in the
absence of collisions. This is also true of the Generic Broad-
cast algorithm of Pedone and Schiper [13]. We now consider

collision-fast algorithms, which are ones that are fast despite
collisions. We show that such algorithms are possible only
in certain special cases.

Our lower bound result for fast learning assumed only
the existence of certain fast-learning scenarios. However,
any algorithm that permits fast learning allows scenarios that
are fast-learning in the presence of collision—namely, sce-
narios in which the messages sent by one of the proposers
reaches the acceptors before messages sent by the other pro-
posers. What we want to show is the impossibility of an al-
gorithm that can always guarantee fast learning despite col-
lisions. But this is trivial because the FLP result shows that
no algorithm can always guarantee learning. So, what kind
of interesting impossibility result can we find?

A useful asynchronous consensus algorithm works in
the “normal” case, in which faulty processes send no mes-
sages, and all messages sent by nonfaulty processes are de-
livered quickly, before any timeouts can occur. We define
a collision-fast learning algorithm to be one in which fast
learning always occurs in the normal case. Hence, we want
the definition of normality to be as restrictive as possible,
since that strengthens the definition of collision-fast and
therefore makes our impossibility result stronger.

Definition (Normal Scenario) A scenario S is normal iff it
satisfies the following properties:
• The only sources of S are proposal events.

[As in the definition of fast accepting, this rules out cheating.]
• The message sent by any single event is not received twice

by the same agent.
[This allows an agent to resend the same message and have both
copies received by another agent.]

• Every non-source event is a message-receiving event.
[Except for initial proposals, each event is triggered by the receipt
of a message and thus not by a timeout.]

• If d1 and d2 are events in S with d1agent = d2agent and
d1�S d2, and e2 is an event in S that receives the message
sent by d2, then there exists an event e1 in S with e1agent =
e2agent and e1�S e2 such that e1 receives the message sent
by d1
[Messages sent from any agent a to any agent b are delivered in
FIFO order, with no gaps.]

• If d and e are events in S and e receives the message sent
by d, then the depth of e in S equals 1 plus the depth of d
in S.
[Messages are delivered in an order consistent with a round-based
algorithm, in which all messages sent in one round are delivered
before those sent in the next round.]

We say that an agent a is complete to depth δ in a normal
scenario iff a performs all events of depth δ or less that it
possibly could. The precise definition is:

Definition (Complete to Depth) An agent a is complete to
depth δ in a scenario S iff either δ = 0 or every agent in
Agents(S) is complete to depth δ − 1 and a receives every
message sent by an event in S of depth less than δ .

Definition (Collision-Fast Accepting) A set M of accep-
tors is collision-fast in algorithm Alg for a set P of proposers
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iff for every nonempty subset {p1, . . . , pk} of P with the pi
all distinct:

• For any proposable values v1, . . . , vk there is a scenario
{e1, . . . ,ek} in Alg such that each ei is a spontaneous event
(a source) in which pi proposes vi.

• For every learner l and every normal scenario S of
Alg with Agents(S) = {l, p1, . . . , pk} ∪ M that contains
{e1, . . . ,ek} as a prefix, if l is complete to depth 2 in S,
then l learns a value in S.

Our definition of an asynchronous algorithm is satisfied by
an algorithm that can control the precise order in which mes-
sages sent by different agents will be delivered. For example,
it is satisfied by an algorithm in which an agent that receives
a message from proposer p1 without having received a mes-
sage from proposer p2 can conclude that p2 has not issued a
proposal. To prove our impossibility result for collision-fast
learning, we need to require that messages sent by different
agents in events of the same depth can be delivered in arbi-
trary order to other agents. This requirement is expressed by
the following definition.

Definition (Independent Delivery) An algorithm Alg has
independent delivery iff for any normal scenario S in Alg,
any event e in S, and any agent a, if

• For every event d in S performed by eagent that precedes e,
there is an event in S in which a receives the message sent
by d.
[a has received every previous message sent by eagent .]

• There is no event in S in which a receives the message
sent by event e.
[a has not yet received the message sent by e.]

• For every event d in S, if the depth of d in S is less than
the depth of e in S, then there is an event in S in which
a receives the message sent by d. [Having a now receive the
message sent by e is consistent with a round-based algorithm.]

then there is an event c performed by a that receives the mes-
sage sent by e such that S∪{c} is a scenario of Alg.
[a can now receive the message sent by e.]

In an algorithm with independent delivery, each agent can
send messages to itself that are delivered in arbitrary or-
der relative to messages sent by other agents. This appears
strange, since we would expect an agent to be able to con-
trol when a message it sends to itself arrives. Such a message
can be helpful only in special architectures where sending it
influences the arrival order of other messages—for example,
by clearing some message queue. It is this type of depen-
dent delivery order that we are ruling out. It is not hard to
see that any result that holds for independent delivery also
holds if agents do not send messages to themselves, since
not sending a message is equivalent to ignoring the message
when it arrives. However, the details of the proof become a
bit simpler if the same assumptions are made for all possible
messages, including ones sent by an agent to itself.

Theorem (Collision-Fast Learning) For any natural num-
bers e and f , with e ≤ f ≤ n and f > 0, and any asyn-

chronous consensus algorithm Alg with independent deliv-
ery, if every set of n− f acceptors is a quorum for Alg and
there are two distinct proposers p1 and p2 such that every
set of n−e acceptors is collision-fast accepting for {p1, p2}
in Alg, then e = 0 and

a. f = 1, every learner is an acceptor, and at least one ac-
ceptor is not a learner, or

b. p1 or p2 (or both) is an acceptor.

Proof Sketch The proof is by contradiction. Let a1, . . . , an

be the acceptors, and define a sequence S0, . . . , Sn of scenar-
ios as follows. In each S j, let p1 propose v1 and p2 propose
v2, where v1 �= v2. The messages generated by these two pro-
posal events are received by p1, p2, and all the acceptors. In
S j, acceptors a1, . . . , a j receive the message from p1 then
the message from p2, while acceptors a j+1, . . . , an receive
those messages in the opposite order.

Let l be a learner. Adding events performed by l, we ex-
tend S j to a normal scenario T j(l) in which l is complete
to depth 2, so it must learn either v1 or v2. In T 0(l), all of
p2’s messages arrive before p1’s, so T 0(l) contains a prefix
in which p1 performs no events, only p2 issues a proposal,
and l is complete to depth 2. Learner l must learn v2 in that
prefix and hence in T 0(l). Similarly, l must learn v1 in T n(l).
Thus, there is some k with 0 < k ≤ n such that l learns v2 in
T k−1(l) and v1 in T k(l). Scenarios T k−1(l) and T k(l) differ
only in the events performed by ak and l. If scenario T k−1(l)
or T k(l) occurs and ak and l both fail, then there is no way
for the remaining agents to know if l learned v1 or v2, so it is
impossible to ensure consistency if any other learner learns
a value. This contradicts the hypothesis that any n− f ac-
ceptors form a quorum, where f > 0.

The proof sketched here breaks down if (i) l is an acceptor,
(ii) p1 or p2 is an acceptor, or (iii) l equals p1 or p2. (Only if
e = 0 does the negation of the theorem’s conclusion, which is
assumed in a proof by contradiction, imply that (ii) is false.)
The proof in the appendix handles these three cases. �

Collision-fast algorithms for both exceptional cases are
given below in Sect. 3.2.2. These algorithms may be of prac-
tical interest.

2.5 Hyperfast learning

For completeness, we consider hyperfast learning, which is
learning a value in one message delay. With hyperfast learn-
ing, a learner must learn a value after receiving messages
only from a proposer. (If the proposal event is the only
source, then messages from other agents are received only
after at least two message delays.)

Definition (Hyperfast Accepting) An algorithm Alg is
hyperfast-accepting for a proposer p iff for every proposable
value v and learner l, there is a scenario S of Alg such that S
has depth at most 1, has as its only source an event in which
p proposes v, and contains an event in which l learns v.
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The following result shows that hyperfast learning is impos-
sible except in very restricted special cases.

Theorem (Hyperfast Learning) A consistent asynchronous
algorithm Alg cannot be hyperfast-accepting for two differ-
ent proposers. For any integer f with 0 < f ≤ n, if every set
of n− f acceptors is a quorum for Alg and Alg is hyperfast-
accepting for a proposer p, then

1. f = 1,
2. p is an acceptor that is not a learner, and
3. For every learner l, either l is an acceptor or {p, l} is

the set of proposers.

Proof Sketch Hyperfast accepting for a proposer q implies
that, for any learner l and value v, there is a scenario in which
q proposes v and sends a message to l, which receives the
message and thereupon learns v. The set of agents in this
scenario is {q, l}.

Suppose the algorithm is hyperfast accepting for two dif-
ferent proposers p1 and p2. The Agent Assumption implies
that there are learners l1 and l2 with {p1, l1} and {p2, l2} dis-
joint. We can then show that consistency is violated by ap-
plying the Scenario Union Lemma to two scenarios whose
set of agents are {p1, l1} and {p2, l2}, in which l1 and l2
learn different values. This shows that hyperfast accepting is
impossible for two different proposers.

We now sketch a proof of the rest of the theorem. If Alg is
hyperfast accepting for p, then for any learner l1 and value
v1 there is a scenario with set of agents {p, l1} in which l1
learns v1. Suppose the set of all agents other than p and l1
contains a proposer p2, a learner l2, and a quorum Q. We
can then construct a scenario with agents {p2, l2} ∪ Q in
which l2 learns a value v2 �= v1. Applying the Scenario Union
Lemma then shows that consistency is violated. To complete
the proof of the theorem, we must show that such agents p2
and l2 and quorum Q exist unless the theorem’s three con-
clusions hold. This is not hard, but requires care in checking
the details. �

It is quite easy to see that the analog of fast and hyperfast
learning with zero message delays is never possible.

3 Algorithms

Our theorems assert that consensus algorithms do not ex-
ist except in certain cases. We now describe algorithms for
those cases, showing that the theorems are as strong as pos-
sible. The theorems are covered in the same order as in
Sect. 2. Paxos and Fast Paxos provide algorithms for the nor-
mal cases. Among the exceptional cases, only the ones for
the Collision-Fast Learning Theorem yield potentially use-
ful algorithms; they appear in Sect. 3.2.2. Since the theorems
are our main results, we just sketch the algorithms and their
correctness proofs. All the algorithms have a parameter f
such that any set of n− f acceptors is a quorum.

3.1 The lower bound on acceptors

The Paxos algorithm [9] achieves the lower bound of n =
2 f + 1 asserted by the main case of the Acceptor Lower
Bound Theorem, for arbitrary sets of learners and proposers.
We now exhibit a consensus algorithm for the anomalous
case of the theorem, with f = 1 and three agents a1, a2, and
a3 such that {a1, a2} is the set of acceptors, {a1, a3} is the
set of proposers, {a2, a3} is the set of learners, and both {a1}
and {a2} are quorums. The existence of such an algorithm
is actually an artifact of our definitions. We show that the
requirements are satisfied by any 1-fault tolerant consensus
algorithm Alg that works for n = 3, such as Paxos, in which
a1, a2, and a3 all act as acceptors.

One-fault tolerance means that any two of the three
agents form a quorum for Alg. In other words, any set
containing a proposer, a learner, and two agents can make
progress. Since the nontriviality and consistency require-
ments do not depend on the set of quorums, to show that
Alg satisfies the requirements of the theorem’s anomalous
case, it suffices to show that {a1} and {a2} are quorums.
This requires showing that any set consisting of a proposer,
a learner, and either a1 or a2 can make progress. But a sim-
ple enumeration of all possible cases shows that any such set
contains two agents, so Alg guarantees that progress can be
made.

3.2 Fast, collision-fast, and hyperfast learning

We now describe several algorithms for fast and hyperfast
learning. All but one of these algorithms is described in
terms of a fast round that may be followed by a slow round.
An agent enters the slow round either spontaneously by a
timeout or when it receives a slow-round message from an-
other agent. Once it enters the slow round, the agent stops
participating in the fast round and ignores any fast-round
messages it may receive.

The slow round can use any consensus algorithm, such as
Paxos, that ensures progress if a proposer, a learner, and n−
f acceptors are nonfaulty. The round first determines either
(a) that some single value v might have been learned in the
fast round, or (b) no value was learned in the first round. In
case (a), only the value v may be proposed to the consensus
algorithm; in case (b), any value may be proposed.

Our algorithms for fast and collision-fast learning have
a parameter e such that every set of n− e acceptors is a fast
or collision-fast accepting set. They require that, in the fast
round, every nonfaulty learner learns a value within 2 mes-
sage delays if n−e acceptors are nonfaulty and, for ordinary
fast learning, if only a single proposer issues a proposal.

3.2.1 Fast learning

The Fast Learning Theorem asserts that if an algorithm is
fast-accepting for at least two different proposers p1 and p2,
then either (a) n > 2e + f or (b) the set of learners equals
{p1, p2}.
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Fast Paxos is an f -fault tolerant consensus algorithm that
works for arbitrary sets of proposers and learners. Under
the same synchrony assumption as ordinary Paxos, it en-
sures fast learning in the absence of collision if n > 2 f and
n > 2e + f . By the Acceptor Lower Bound Theorem, there
can exist a fast-learning algorithm with n ≤ 2 f for case (a)
only in the anomalous three-agent case of that theorem with
n = 2, f = 1, and e = 0. A collision-fast, and hence fast,
algorithm for this case is given in Sect. 3.2.2 below.

Here we describe only a fast-learning algorithm that
works for e = f and n > 2 f in case (b), when {p1, p2} is
the set of learners. In the fast round, each pi can send a pro-
posal to the acceptors iff it has not already learned a value.
An acceptor votes for a proposed value in the fast round and
sends its vote to the pi iff it has not already voted. A learner
learns a value v in the fast round iff it receives at least n− f
fast-round votes for v and it has not proposed any value other
than v.

The algorithm is fast accepting because a proposed value
is learned in 2 message delays if it is the only one proposed,
n− f acceptors are nonfaulty, and no timeout occurs during
the fast round. Consistency is maintained in the fast round
because n > 2 f implies that two different values cannot both
receive n− f votes. We now show that progress is ensured if
a learner, a proposer, and n− f acceptors are nonfaulty.

Suppose pi, a learner, and n− f acceptors are nonfaulty.
Then in the slow round, those agents can determine that ex-
actly one of the following occurred in the fast round:

• pi learned v.
• pi did not learn a value, at least one of the n− f acceptors

voted for a value v, and

– v was not proposed by pi (so it was proposed by the
other proposer), or

– v was proposed by pi and none of the acceptors voted
for a value other than v.

• None of the n− f acceptors voted.

In the first two cases, v was proposed and no value other
than v could have been learned in the fast round, so v can be
proposed in the slow round. In the third case, no value could
have been learned in the fast round, so any value can be pro-
posed in the slow round. Hence, a value can be proposed in
the slow-round consensus algorithm, ensuring progress.

3.2.2 Collision-fast learning

We now give two collision-fast algorithms for e = 0 and n >
2 f :

A. An algorithm that is collision-fast learning for any set of
proposers when f = 1 and every acceptor except one is
a learner.

B. An algorithm, in which every acceptor is a proposer, that
is collision-fast for a set of proposers consisting of the
acceptors together with at most one additional proposer.

We can always reduce the set of proposers or learners by
simply not letting some proposers propose and ignoring

what some learners learn. Therefore, these are the most
general algorithms whose existence is not ruled out by the
Collision-Fast Learning Theorem.

These two algorithms are of more than theoretical
interest. The e = 0 case is important because, if a system is
automatically reconfigured to remove any server that fails,
then all servers are nonfaulty most of the time. Algorithm
A is interesting because the most common applications of
asynchronous consensus will probably tolerate one fault by
using three servers, only two of which maintain the system
state and thus need to be learners. Algorithm B handles the
traditional case in which each agent is a proposer, a learner,
and an acceptor.

Algorithm A Algorithm A is a simple variant of the Paxos
algorithm for f = 1. Recall how Paxos works in this case [9].
It begins with a leader chosen for ballot 0. Proposers send
proposed values to the leader. When the leader receives the
first such value, it sends it in a ballot-0 phase 2a message
to each acceptor. Upon receiving the phase 2a message, an
acceptor then sends the value to every learner in a ballot-
0 phase 2b message. A learner learns a value if it receives
n− f ballot-0 phase 2b messages with the value.

We explain Algorithm A first for the case n = 3. We let
the leader for ballot 0 be the acceptor that is not a learner,
so the learners are the other two acceptors. The leader sends
its phase 2a and phase 2b messages together. Upon receiving
the leader’s phase 2a/b message, each other acceptor knows
about two phase 2b messages for the value—the leader’s and
its own—so it learns the value. (Recall that n = 3 and f = 1.)
In fact, the learner does not actually have to send its phase 2b
message. In the absence of failures or timeouts, the proposal
is then learned within two message delays. The algorithm is
thus collision-fast for any set of proposers.

To generalize the algorithm to an arbitrary n > 2, we
observe that Paxos works with any set of quorums, subject
only to the requirement that any two quorums have an
acceptor in common. A learner learns a value when it
receives phase 2b messages with the same ballot number
from all acceptors in a quorum. We let the leader be the
acceptor that is not a learner, and we let a quorum consist
of either (i) any set containing the leader and at least one
other acceptor or (ii) the set of all acceptors other than
the leader. This set of quorums satisfies the requirement
that any two quorums have an acceptor in common. Since
f = 1, any n− f acceptors form a quorum. As in the n = 3
case, a learner learns a value when it receives the ballot-0
phase 2a/b message from the leader, because it and the
leader form a quorum.

Algorithm B Let p1, . . . , pn be the acceptors, which are also
proposers, and let p0 be an additional proposer. These agents
perform the following actions in the fast round.

• If it has not already sent a fast-round message, a proposer
pi can propose a value v by sending the message 〈pi, v〉
to all acceptors other than itself and, if it is an acceptor,
sending the message 〈pi : 〈pi, v〉〉 to all learners.
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• Upon receipt of the message 〈p j,v〉, an acceptor pi may
send the message 〈pi : 〈p j,v〉〉 to all learners iff it has not
already sent a message 〈pi : 〈pk, v′ 〉〉 with k > j.

A learner learns the value v if, for some i, it has received the
message 〈p j : 〈pi, v〉〉 from every acceptor p j.

For each i, if pi proposed a value in the fast round, let vi
be that value. Suppose some pi did propose a value in the fast
round, and let k be the largest such i. We prove consistency
of the fast round by showing that vk is the only value that can
be learned. This is obvious if k = 0, since v0 is then the only
value proposed. If k > 0, then it is implied by the following
assertion, which is easily shown to be an invariant of the
algorithm, for any i > 0:

If process i has proposed a value, then it has not sent
any message 〈pi : 〈p j,v〉〉 with j < i.

If pk and all the acceptors are non-faulty and no timeout oc-
curs during the fast round, then every acceptor i sends the
message 〈pi : 〈pk,vk〉〉, so every non-faulty learner learns
vk in two message delays. Hence, the algorithm is collision-
fast accepting for {p0, . . . , pn}.

To ensure progress in the slow round, any set of n− f ac-
ceptors must be able to determine either (a) a proposed value
v j such that no value except v j could have been learned in the
fast round, or (b) that no value was learned in the fast round.
For n− f > 0 (so a quorum contains at least one acceptor),
this is easy to do because, for any acceptor pi:

(a) If j is the largest integer such that pi sent a 〈pi : 〈p j :
v j 〉〉 message, then only v j could have been learned in
the fast round.

(b) If pi sent no 〈pi : 〈p j : v j 〉〉 message, then no value was
learned in the fast round.

The Anomalous Three-Agent Case Algorithms A and B both
work and are equivalent for the anomalous three-agent case
of the Acceptor Lower Bound Theorem. Algorithm A is fast-
learning despite the failure of the non-acceptor agent be-
cause fast learning requires only that the leader be nonfaulty.
For this set of agents, the fast round of Algorithm B is equiv-
alent to the initial part of Algorithm A in which proposal
messages and ballot-0 phase 2a/b messages are sent.

3.2.3 Hyperfast learning

The Hyperfast Learning Theorem permits hyperfast learn-
ing only with f = 1 and only for a single proposer p such
that (i) p is an acceptor that is not a learner and (ii) either
(a) every learner is an acceptor, or (b) every learner but one
is an acceptor and the other learner is the only proposer be-
sides p. We show that a hyperfast learning algorithm exists
in this case.

The definition of hyperfast learning pretty much deter-
mines the fast round. Proposer p can propose at most one
value by sending a message to every learner, and a learner
learns that value upon receiving the message. Hyperfast
learning and consistency of the fast round are obvious. To

ensure progress in the slow round, any proposer, learner, and
set of n− 1 acceptors must be able to determine if p pro-
posed a value that could have been learned in the fast round.
They can do this because conditions (i) and (ii) imply that
either p is the proposer, p is one of the n− 1 acceptors, or
the proposer and the n−1 acceptors include all learners.

4 Conclusion

In a fault-tolerant asynchronous consensus algorithm, how
many message delays must occur between when a value is
proposed and when a value is learned? We have shown that
the answer is 3, 2, or 1, depending on how many acceptor
processes are used to choose the value, how many of them
may fail, exactly who the proposers and learners are, and
whether or not proposals are issued concurrently. For an al-
gorithm that uses n acceptors, can always make progress if
n− f of them are non-faulty, and works with arbitrary pro-
posers and learners, the answers are:

– Learning is possible in 3 message delays iff n > 2 f .
– Learning is possible in 2 message delays when n − e

acceptors are non-faulty, for 0 ≤ e ≤ f and f > 0, iff
n > 2e + f . However, concurrent proposals can prevent
an algorithm from achieving such fast learning.

– Learning is impossible in 1 message delay.

We have presented algorithms showing that each of these
results is false for special choices of proposers and/or learn-
ers. Our two algorithms that permit learning in 2 message
delays despite concurrent proposals may have practical ap-
plications.

The consensus problem is important, so we want our re-
sults to be unambiguous and correct. Our presentation has
therefore been rigorous, and the proofs and formal exposi-
tion in the appendix are rather long and tedious. We do not
know any easier way to avoid errors.

Appendix

A Proofs

We now provide rigorous proofs of the results presented in Sect. 2.
The results are not hard to prove under the assumption that the sets
of proposers, acceptors, and learners are pairwise disjoint. Difficulties
are caused by the exceptional cases that arise when those sets are not
pairwise disjoint. Since exceptional cases may permit interesting algo-
rithms, we feel that it is important to make sure that we have identified
all of them. In other words, we want to make sure that our theorems
are not just “approximately correct”.

The only practical way we know of checking the correctness of a
theorem is by writing its proof in the hierarchically structured style ex-
plained in [7]. A structured proof consists of a sequence of statements
and their proofs; each of those proofs is either a structured proof or an
ordinary paragraph-style proof. The jth step in the current level i proof
is numbered 〈i〉j . The proof statement “〈i〉j . Q.E.D.” denotes the cur-
rent goal—that is, the level i− 1 statement being proved by this step.
A proof statement

ASSUME: A PROVE: P
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asserts that P can be proved under assumption A, and that A is assumed
in the lower-level steps that prove P. Each paragraph-style “leaf” proof
explicitly names each assumption and prior proof step required to
prove the statement. However, n, f , and e are taken to be natural num-
bers without mentioning the assumptions implying that they are.

We recommend reading the proofs hierarchically, from the top
level down. To read the proof of a long level i step, first read the level
i+1 statements that form its proof, together with the proof of the final
Q.E.D. step (which is usually a short paragraph). The proof of the level
i+1 steps can then be read in any order.

The steps of the proof are written in informal mathematics. They
could be expressed as TLA+ formulas using the definitions in Sect. B
below, except that:

• TLA+ has no construct corresponding to an ASSUME/PROOF step.
A PROOF clause can be expressed as a TLA+ formula, and an AS-
SUME clause as a collection of CONSTANT declarations and a for-
mula.

• A step of the form “Choose an x satisfying P(x)” or “Let x satisfy

P(x)” is expressed as the definition x
∆= CHOOSE x : P(x) and the

assertion P(x), which is verified by proving ∃x : P(x).
Each proof is preceded by an informal sketch and an explanation of
any notation introduced for the proof. The following notation is used
in more than one proof.

• A is the set of all acceptors.
• For i equal to 1 or 2, we define ¬i by ¬1 = 2 and ¬2 = 1.
• {x ∈ C : P(x)} is the subset of the set C consisting of all elements x

that satisfy the predicate P(x).
• We say that the set of agents is anomalous iff there are three agents

a1, a2, and a3 such that {a1, a2} is the set of acceptors, {a1, a3} is
the set of proposers, and {a2, a3} is the set of learners.
[Case b of the Acceptor Lower Bound Theorem asserts that the set
of agents is anomalous.]

• An itemized list of assertions denotes their conjunction if the items
are labeled with numbers; it denotes their disjunction if they are la-
beled with letters. (In the latter case, “or”s are written explicitly.)

• i . . j is the set of all integers k with i≤ k ≤ j, for any natural numbers
i and j.

A.1 The accepting lemma

Lemma (Accepting) For any consistent asynchronous algorithm
Alg, any proposers p1 and p2, any learners l1 and l2, and any sets
Q1 and Q2 of acceptors such that each Qi is an accepting set for pi, the
sets {p1, l1}∪Q1 and {p2, l2}∪Q2 are not disjoint.

The proof sketch of Sect. 2.2 is quite rigorous. We provide a hierar-
chically structured version here mainly as an introduction to the proof
style.

Proof

ASSUME: 1. Alg is a consistent asynchronous algorithm.
2. p1 and p2 are proposers, l1 and l2 are learners, and Q1

and Q2 are sets of acceptors such that Qi is an accepting
set for pi, for each i = 1,2.

3. {p1, l1}∪Q1 and {p2, l2}∪Q2 are disjoint.
PROVE: FALSE
〈1〉1. Choose proposable values v1 and v2 and scenarios S1 and S2 such

that:
1. v1 �= v2
2. Si is a scenario of Alg with Agents(Si) ⊆ {pi, li}∪Qi, for

i = 1,2.
3. Si has an event in which li learns vi, for i = 1,2.

PROOF: Values v1 and v2 exist by the Value Assumption. Sce-
narios Si satisfying conditions 2 and 3 exist by assumption 2 and
the definition of an accepting set.

〈1〉2. S1 ∪S2 is a scenario of Alg.
PROOF: This follows from 〈1〉1.2, assumption 3, and the Sce-
nario Union Lemma (Sect. 2.1).

〈1〉3. Q.E.D.
PROOF: Step 〈1〉1.2 implies that each learner li learns vi in S1 ∪
S2, which is a scenario of Alg by 〈1〉2. By 〈1〉1.1, this contradicts
assumption 1 (the consistency of Alg).

A.2 The acceptor lower bound theorem

Theorem (Acceptor Lower Bound) For any natural number f with
f ≤ n and any consistent asynchronous algorithm Alg, if any set of
n − f acceptors is an accepting set in Alg for every proposer, then
either

a. n > 2 f , or
b. f = 1 and the set of agents is anomalous.

We show that if n ≤ 2 f , then except in the case of the anomalous
set of agents, there exist accepting sets, proposers, and learners that
contradict the Accepting Lemma. The proof is easy if n ≥ 4, but rather
complicated if n < 4. Fortunately the proof for n < 4 can be checked
with a computer by exhaustive enumeration. We do this by having the
TLC model checker verify the truth of a TLA+ formula, so the reader
can determine directly the correspondence between what the computer
verified and what we claim has been proved. We feel that it is much
less likely for an undetected error in TLC to let it verify an incorrect
formula than it would be for us to make an undetected error in a hand
proof.

Proof

ASSUME: 1. Alg is a consistent asynchronous algorithm.
2. f is a natural number with f ≤ n and n ≤ 2 f .
3. Every set of n− f acceptors is an accepting set for every

proposer.
PROVE: f = 1 and there exist a1, a2, and a3 such that {a1, a2} is

the set of acceptors, {a1, a3} is the set of proposers, and
{a2, a3} is the set of learners.

〈1〉1. Choose proposers p1 and p2 and learners l1 and l2 such that
{p1, l1} and {p2, l2} are disjoint.
PROOF: The existence of the pi and li follows from the Agent
Assumption.

〈1〉2. CASE: n ≥ 4
〈2〉1. Choose acceptors a1, . . . , an such that:

1. A = {a1, . . . ,an}
2. {p1, l1}∩A ⊆ {a1, a2}
3. {p2, l2}∩A ⊆ {an−1, an}

PROOF: It follows from step 〈1〉1, the level 〈1〉 case as-
sumption (n ≥ 4), and the definition of n (the cardinality
of A ) that we can number the acceptors in this way.

〈2〉2. {p1, l1}∪{a1, . . . ,an− f } and {p2, l2}∪{a f +1, . . . ,an} are
disjoint.
〈3〉1. {a1, . . . ,an− f } and {a f +1, . . . ,an} are disjoint.

PROOF: Assumption 2 (n ≤ 2 f ) implies n −
f < f + 1. This implies the disjointness of
{a1, . . . ,an− f } and {a f +1, . . . ,an}, since 〈2〉1.1 and
the definition of n imply that the ai are all distinct.

〈3〉2. 1. {p1, l1} and {a f +1, . . . ,an} are disjoint.
2. {p2, l2} and {a1, . . . ,an− f } are disjoint.
PROOF: The level 〈1〉 case assumption (n ≥ 4) and
assumption 2 (n ≤ 2 f ) imply f ≥ 2. Since this im-
plies f +1 > 2, part 1 follows from 〈2〉1.2 and 〈3〉1.
Since f ≥ 2 implies n− f < n− 1, part 2 follows
from 〈2〉1.3 and 〈3〉1.

〈3〉3. Q.E.D.
PROOF: 〈2〉2 follows from 〈1〉1, 〈3〉1, and 〈3〉2.

〈2〉3. 1. {a1, . . . ,an− f } is an accepting set for p1 in Alg.
2. {a f +1, . . . ,an} is an accepting set for p2 in Alg.
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Fig. 1 TLA+ formula used in the proof of the Acceptor Lower Bound
Theorem

PROOF: By assumption 3 and 〈1〉1 (the pi are proposers).
〈2〉4. Q.E.D.

PROOF: Steps 〈1〉1 (the pi are proposers and the li are
learners), 〈2〉2, 〈2〉3, and assumption 1 contradict the Ac-
cepting Lemma.

〈1〉3. CASE: n ≤ 3 and the set of agents is not anomalous.
PROOF: It suffices to show that, if n ≤ 3, then except in the
anomalous case with three agents, we can choose proposers p1
and p2, learners l1 and l2, and sets Q1 and Q2 each containing
n − f acceptors such that {p1, l1} ∪ Q1 and {p2, l2} ∪ Q2 are
disjoint. By the Agent Assumption, it suffices to show this when
A is the set {1, . . . ,n} and there exist two distinct proposers and
two distinct learners in the set {1, . . . ,n + 4}. The existence of
the pi, li, and Qi is therefore asserted by the TLA+ formula of
Figure 1. The validity of this formula has been verified with the
TLC model checker.

〈1〉4. Q.E.D.
PROOF: Cases 〈1〉2 and 〈1〉3 are exhaustive.

A.3 The fast accepting lemma

Lemma (Fast Accepting) For any consistent asynchronous algo-
rithm Alg, if there exist proposers p1, p2, and pq, learners l1, l2 and lq,
fast-accepting sets M1 for p1 and M2 for p2 in Alg, and a quorum Q
for Alg such that

• p1 �= p2
• p1 /∈ M2 and p2 /∈ M1
• l1 /∈ {p2, pq, lq}∪ (M2 \M1)∪Q
• l2 /∈ {p1, pq, lq}∪ (M1 \M2)∪Q
• {pq, lq}∩M1 ∩M2 is empty

then M1 ∩M2 ∩Q is nonempty.

The proof follows the proof sketch in Sect. 2.3. Recall that ¬1 = 2 and
¬2 = 1.
Proof

ASSUME: 1. Alg is a consistent asynchronous algorithm.
2. p1, p2, and pq are proposers, l1, l2, and lq are learners,

and M1, M2, and Q are sets of acceptors.
3. Mi is a fast-accepting set for pi in Alg, for i = 1,2.
4. Q is a quorum for Alg.
5. p1 �= p2
6. pi /∈ M¬i, for i = 1,2.

7. li /∈ {p¬i, pq, lq} ∪ (M¬i \Mi) ∪ Q, for i = 1,2.
8. {pq, lq}∩M1 ∩M2 is empty.
9. M1 ∩M2 ∩Q is empty.

PROVE: FALSE
〈1〉1. For i = 1,2, choose proposable values vi and a scenario Si such

that:
1. v1 �= v2.
2. Si is in Alg.
3. Agents(Si) ⊆ {pi, li}∪Mi.
4. Si has depth at most 2.
5. The only source of Si is an event in which pi proposes vi.
6. Si contains an event ei in which li learns vi.

PROOF: The existence of the vi follows from the Value Assump-
tion. The existence of the Si follows from assumptions 2 (pi a
proposer and li a learner) and 3 (Mi fast accepting for pi).

DEFINITION T i
∆= {e ∈ Si : e �Si

ei}
Ui

∆= {e ∈ T i : (Depth(e,T i) ≤ 1) ∧
(eagent ∈ {pi}∪ (Mi \M¬i))}

for i = 1,2, where Depth(e,T i) is the depth of event e in T i.

〈1〉2. For i = 1,2:
1. Ui � T i � Si
2. T i and Ui are scenarios in Alg.

PROOF: T i is clearly a prefix of Si. By 〈1〉1.5, the only depth
0 events of Si are performed by pi, which implies that Ui is a
prefix of T i, proving part 1. Part 2 follows from part 1 by 〈1〉1.2
and assumption 1 (Alg asynchronous).

〈1〉3. U1 ∪U2 is in Alg.
PROOF: The definition of Ui implies Agents(Ui) ⊆ {pi} ∪
(Mi \M¬i). Assumption 6 therefore implies that Agents(U1)
and Agents(U2) are disjoint. Step 〈1〉2.2, assumption 1 (Alg
asynchronous), and the Scenario Union Lemma then imply that
U1 ∪U2 is in Alg.

〈1〉4. For i = 1,2:
1. li learns vi in T i.
2. Agents(U¬i) and Agents(T i) are disjoint.

PROOF: Part 1 follows from the definition of T i and 〈1〉1.6. By
〈1〉1.3, 〈1〉2.1, and the definition of Ui, to prove part 2 it suffices
to show that {pi, li} ∪ Mi and {p¬i} ∪ (M¬i \Mi) are disjoint.
This follows from:
• pi �= p¬i by assumption 5.
• pi /∈ (M¬i \Mi) by assumption 6.
• li /∈ {p¬i}∪ (M¬i \Mi) by assumption 7.
• Mi is disjoint from {p¬i} by assumption 6.
• Mi is disjoint from M¬i \Mi by definition of set difference.

〈1〉5. Choose a scenario V such that:
1. V is in Alg.
2. (U1 ∪U2) �V .
3. Agents(V \(U1 ∪U2)) ⊆ {pq, lq}∪Q
4. V contains a learning event eq performed by lq.

PROOF: The existence of V follows from 〈1〉3, assumption 2 (pq
a proposer and lq a learner), and assumption 4 (Q a quorum).

〈1〉6. T i ∪V is a scenario of Alg, for i = 1,2.
〈2〉1. T i ∪U¬i is in Alg.

PROOF: By 〈1〉2.2, 〈1〉4.2, assumption 1 (Alg asyn-
chronous) and the Scenario Union Lemma.

〈2〉2. U1 ∪U2 � T i ∪U¬i
PROOF: Since T i is a scenario (by 〈1〉2.1), an event e in
T i ∪U¬i precedes an event f in T i iff e is in T i, so 〈1〉2.1
(Ui � T i) implies that U1 ∪U2 is a prefix of T i ∪U¬i.

〈2〉3. Agents((T i ∪U¬i)\(U1 ∪U2)) ⊆ {li}∪ (M1 ∩M2)
PROOF: 〈1〉2.1 (Ui � T i) and 〈1〉4.2 imply (T i ∪
U¬i)\(U1 ∪U2) equals T i \Ui. Step 〈1〉1.3 asserts that
Agents(T i) ⊆ {pi, li}∪Mi, and 〈1〉1.4 and the definition
of T i imply that the only events in T i of depth greater
than 1 are performed by li. Hence the definitions of T i
and Ui imply Agents(T i \Ui) ⊆ {li}∪ (M1 ∩M2), since
Mi \(Mi \M¬i) = M1 ∩M2.
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〈2〉4. Agents(V \(U1 ∪ U2)) and Agents((T i ∪ U¬i)\(U1 ∪
U2)) are disjoint.
PROOF: By 〈1〉5.3 and 〈2〉3, we must prove that {li} ∪
(M1 ∩ M2) and {pq, lq} ∪ Q are disjoint. This follows
from:
• li /∈ {pq, lq}∪Q by assumption 7.
• (M1 ∩M2) and {pq, lq} are disjoint by assumption 8.
• M1 ∩M2 and Q are disjoint by assumption 9.

〈2〉5. Q.E.D.
PROOF: 〈1〉6 follows from 〈1〉5.1, 〈1〉5.2, 〈2〉1, 〈2〉2,
〈2〉4, assumption 1, and part A2 of the definition of an
asynchronous algorithm, substituting T ← V , U ← T i ∪
U¬i, and S ←U1 ∪U2.

〈1〉7. Q.E.D.
PROOF: 〈1〉4.1, 〈1〉5.4, 〈1〉6, and assumption 1 (Alg consistent)
imply that lq learns vi in event eq, for i = 1,2. This is impossible
by 〈1〉1.1.

A.4 The fast learning theorem

Theorem (Fast Learning) For any natural numbers e and f with f >
0 and e ≤ f ≤ n and for any asynchronous consensus algorithm Alg, if
every set of n− f acceptors is a quorum for Alg and every set of n− e
acceptors is fast-accepting in Alg for two distinct proposers p1 and p2,
then n > 2e+ f or the set of learners equals {p1, p2}.

The proof fills in the details missing from the proof sketch in Sect. 2.3.

Proof

ASSUME: 1. Alg is a consistent asynchronous Algorithm.
2. e and f are natural numbers with

1. e ≤ f ≤ n
2. 0 < f
3. n ≤ 2e+ f

3. Every set of n− f acceptors is a quorum for Alg.
4. p1 and p2 are proposers with p1 �= p2.
5. Every set of n − e acceptors is fast-accepting for p1

and p2.
6. The set of learners does not equal {p1, p2}.

PROVE: FALSE
〈1〉1. CASE: The set of agents is not anomalous.

〈2〉1. 1. n > 2 f
2. n > 2e
3. e > 0
4. n− e > 1

PROOF: Part 1 follows from assumptions 1 and 3, the level 〈1〉
case assumption, and the Acceptor Lower Bound Theorem. Part 2
follows from part 1 and assumption 2.1. Part 3 follows from

f < n [by part 1]
≤ 2e+ f [assumption 2.3]

Part 4 follows from

n− e > 2 f − e [by part 1]
≥ 1+( f − e) [since f ≥ 1 by assumption 2.2]
≥ 1 [since ( f − e) ≥ 0 by assumption 2.1]

〈2〉2. Choose learners l1 and lq such that
1. l1 �= lq
2. l1 /∈ {p1, p2}
3. If there is a learner in A \{p1, p2}, then l1 ∈ A .

PROOF: l1 and lq exist by the Agent Assumption and assump-
tion 6.

〈2〉3. Choose acceptors a1, . . . , an such that
1. A = {a1, . . . ,an}
2. IF l1 ∈ A THEN l1 = an−e
3. IF p1 ∈ A THEN p1 = a1

4. IF p2 ∈ A THEN p2 = an

5. IF (lq ∈ A )∧ (lq /∈ {p1, p2})
THEN IF p1 /∈ A THEN lq = a1

ELSE IF p2 /∈ A THEN lq = an
ELSE lq = a2

〈3〉1. CASE: a. lq is not an acceptor, or
b. lq ∈ {p1, p2}, or
c. p1 or p2 is not an acceptor.

PROOF: In each of these three cases, parts 2–5 of 〈2〉3 con-
strain at most the choices of a1, an−e, and an. By assumption
4 (p1 �= p2), 〈2〉2.1, and 〈2〉2.2, no two of these acceptors are
constrained to equal the same agent. Hence, the constraints
can be satisfied because 〈2〉1.3 and 〈2〉1.4 imply that 1, n− e,
and n are three distinct integers.

〈3〉2. CASE: 1. lq, p1, and p2 are all acceptors, and
2. lq /∈ {p1, p2}

〈4〉1. CASE: l1 is not an acceptor.
PROOF: In this case, 〈2〉3 is satisfied with p1 = a1, lq = a2,
and p2 = an, since 2 < n by the level 〈3〉 case assumption
and assumption 4 (p1 �= p2).

〈4〉2. CASE: l1 is an acceptor.
〈5〉1. n ≥ 4

PROOF: By the levels 〈3〉 and 〈4〉 case assumptions and
〈2〉2.

〈5〉2. n− e > 2
〈6〉1. CASE: e > 1

PROOF: In this case, 〈5〉2 follows from 〈2〉1.2, which
implies n− e > e.

〈6〉2. CASE: e = 1
PROOF: In this case, 〈5〉2 follows from 〈5〉1.

〈6〉3. Q.E.D.
PROOF: Cases 〈6〉1 and 〈6〉2 are exhaustive by
〈2〉1.3.

〈5〉3. Q.E.D.
PROOF: 〈5〉2 and 〈2〉1.3 imply 2 < n−e < n, so by 〈2〉2
and the levels 〈3〉 and 〈4〉 case assumptions (which im-
ply that lq, l1, p1, and p2 are all distinct), we can satisfy
〈2〉3 by numbering the acceptors so that p1 = a1, lq = a2,
l1 = an−e and p2 = an.

〈4〉3. Q.E.D.
PROOF: Cases 〈4〉1 and 〈4〉2 are exhaustive.

〈3〉3. Q.E.D.
PROOF: Cases 〈3〉1 and 〈3〉2 are exhaustive (by propositional
logic).

DEFINITION M1
∆= {a1, . . . ,an−e}

M2
∆= {ae+1, . . . ,an}

〈2〉4. Let Q be a subset of {a1, . . . ,ae}∪{an−e+1, . . . ,an} contain-
ing n− f elements.

PROOF: 〈2〉1.2 (which implies n− e + 1 > e) and 〈2〉3.1 (which
implies that the ei are all distinct) show that {a1, . . . ,ae} ∪
{an−e+1, . . . ,an} contains 2e elements, and assumption 2.3 im-
plies n− f ≤ 2e. Hence such a Q exists.

DEFINITION l2
∆= l1 and pq

∆= p1

〈2〉5. 1. pi /∈ M¬i, for i = 1,2.
2. li /∈ {p¬i, pq, lq}∪ (M¬i \Mi)∪Q, for i = 1,2.
3. {pq, lq}∩M1 ∩M2 is empty.
4. M1 ∩M2 ∩Q is empty.

〈3〉1. e+1 ≤ n− e < n− e+1
PROOF: e+1 ≤ n− e by 〈2〉1.2.

〈3〉2. M1 ∩M2 = {ae+1, ...,an−e}
PROOF: By definition of M1 and M2, since 〈2〉1.2 implies e+
1 ≤ n− e and 〈2〉3.1 implies that the ai are distinct.

〈3〉3. M1 ∩M2 ∩Q is empty.
PROOF: By 〈3〉2 and 〈2〉4, since 〈2〉3.1 implies that the ai are
distinct.

〈3〉4. pi /∈ M¬i, for i = 1,2.
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PROOF: Since e > 0 by 〈2〉1.3, we have
1. 1 < e+1, so p1 /∈ M2 by 〈2〉3.3.
2. n− e < n, so p2 /∈ M1 by 〈2〉3.4.

〈3〉5. li /∈ {p¬i, pq, lq}∪ (M¬i \Mi)∪Q, for i = 1,2.
PROOF:

1. li /∈ {p¬i, pq, lq} by 〈2〉2.1, 〈2〉2.2, and the definitions of
li and pq.

2. li /∈ (M¬i \Mi)∪Q by 〈2〉3.2 and 〈3〉3, since 〈3〉2 im-
plies that an−e ∈ M1 ∩M2.

〈3〉6. {pq, lq}∩M1 ∩M2 is empty.
〈4〉1. pq /∈ M1 ∩M2

PROOF: By 〈2〉3.3 and 〈3〉2, since 〈2〉1.3 implies 1 < e+1,
and pq is defined to equal p1.

〈4〉2. lq /∈ M1 ∩M2
〈5〉1. CASE: lq = a2

〈6〉1. n ≥ 4
PROOF: The level 〈5〉 case assumption and 〈2〉3 im-
ply that the IF clause of 〈2〉3.5 is true and that p1
and p2 are acceptors. Step 〈2〉2 and assumption 4
(p1 �= p2) then imply that p1, p2, l1, and lq are all
distinct acceptors, so n ≥ 4.

〈6〉2. n < 4e
PROOF: This follows from

2n ≤ 4e+2 f [by assumption 2.3]
< 4e+n [by 〈2〉1.1]

〈6〉3. Q.E.D.
PROOF: 〈6〉1 and 〈6〉2 imply e+1 > 2. Step 〈4〉2 then
follows from 〈3〉2 and the level 〈5〉 case assumption.

〈5〉2. CASE: lq �= a2
PROOF: In this case, if lq is an acceptor, then 〈2〉3 im-
plies that it equals a1 or an. Step 〈4〉2 then follows from
〈3〉2 because 〈2〉1.3 implies 1 < e+1 and n− e < n.

〈5〉3. Q.E.D.
PROOF: Cases 〈5〉1 and 〈5〉2 are exhaustive.

〈4〉3. Q.E.D.
PROOF: 〈3〉6 follows from 〈4〉1 and 〈4〉2.

〈3〉7. Q.E.D.
PROOF: 〈2〉5 follows from 〈3〉4, 〈3〉5, 〈3〉6, and 〈3〉3.

〈2〉6. Q.E.D.
PROOF: M1 and M2 are both fast-accepting sets for p1 and p2 in
Alg by assumption 5, and Q is a quorum for Alg by assumption 3.
The other hypotheses of the Fast-Accepting Lemma are asserted
by assumption 4, 〈2〉5.1, 〈2〉5.2, and 〈2〉5.3. The conclusion of
the Fast-Accepting Lemma and 〈2〉5.4 provide the desired con-
tradiction.

〈1〉2. CASE: The set of agents is anomalous.
〈2〉1. Let a1, a2, and a3 be three distinct agents such that A =

{a1,a2}, {a1,a3} is the set of proposers, and {a2,a3} is the
set of learners.

PROOF: The ai exist by the level 〈1〉 case assumption.

DEFINITION q1
∆= a1 and q2

∆= a3
〈2〉2. n = 2, f = 1, and e > 0.

PROOF: 〈2〉1 implies n = 2, and assumption 1 (Alg consistent and
asynchronous), assumption 2.2 ( f > 0), assumption 3 (n− f ac-
ceptors are a quorum), and the Accepting Lower Bound Theorem
imply f = 1. Assumption 2.3 (n ≤ 2e+ f ) then implies e > 0.

〈2〉3. Let v1 and v2 be proposable values with v1 �= v2 and, for i =
1,2, let T i be a scenario in Alg such that:

1. The only source event of T i is a proposal of vi by qi.
2. Agents(T i) = {qi,a2}.
3. T i has depth at most 2.
4. There is an event ei in T i in which a2 learns vi.

PROOF: The vi exist by the Value Assumption. Step 〈2〉1 implies
{p1, p2} equals {q1,q2}, and 〈2〉2 and assumption 2.1 imply e =
1, so assumption 5 implies {a2} is fast-accepting for q1 and q2.
This implies the existence of the scenarios T i in Alg.

DEFINITION For i = 1,2: Si
∆= {e ∈ T i : e �T i

ei}
Ri

∆= {e ∈ Ri : eagent = qi}
〈2〉4. For i = 1,2:

1. Ri and Si are in Alg.
2. Ri � Si
3. a2 learns vi in Si.

PROOF: Si is a prefix of T i, so it is in Alg by assumption 1 (Alg
asynchronous). By 〈2〉3.4, a2 learns vi in Si. By 〈2〉1 (which im-
plies qi �= a2), 〈2〉3.1, and 〈2〉3.3, qi cannot receive a message
from another agent in Si. Hence Ri is a prefix of Si and is there-
fore in Alg by assumption 1.

〈2〉5. 1. R1 ∪R2 is in Alg
2. For i = 1,2: 1. Si ∪R¬i is in Alg.

2. R1 ∪R2 � Si ∪R¬i.
3. Agents((Si ∪R¬i)\(R1 ∪R2)) = {a2}

PROOF: Assumption 1 (Alg asynchronous), 〈2〉4.1, 〈2〉3.2, the
definition of R¬i (which implies Agents(R¬i) = {q¬i}), 〈2〉1
(which implies q1, q2, and a2 are distinct agents), and the Sce-
nario Union Lemma imply that Si ∪ R¬i is in Alg. Step 〈2〉4.2
implies R1 ∪R2 is a prefix of Si ∪R¬i, so it is in Alg by assump-
tion 1 (Alg asynchronous). The definition of Ri and 〈2〉3.2 imply
Agents((Si ∪R¬i)\(R1 ∪R2)) = {a2}.

〈2〉6. Choose a scenario U such that
1. U is in Alg.
2. R1 ∪R2 �U .
3. Agents(U \(R1 ∪R2)) ⊆ {a1,a3}
4. a3 learns a value in U .

PROOF: Scenario U exists by 〈2〉5.1, 〈2〉1 (a1 a proposer and a3
a learner and acceptor), 〈2〉2 ( f = 1), and assumption 3 (quorum
assumption).

〈2〉7. U ∪Si is in Alg, for i = 1,2.
PROOF: By 〈2〉5.2, 〈2〉6, assumption 1, and part A2 of the defini-
tion of an asynchronous algorithm, since 〈2〉6.2 implies U ∪Si =
U∪(Si∪R¬i) and 〈2〉1 implies that {a2} and {a1,a3} are disjoint.

〈2〉8. Q.E.D.
PROOF: 〈2〉4.3 implies that a2 learns vi in U ∪Si, for i = 1,2, and
〈2〉6.4 asserts that a3 learns a value in U . Since v1 �= v2 by 〈2〉3,
assumption 1 (consistency) implies that U ∪S1 and U ∪S2 cannot
both be in Alg, contradicting 〈2〉7.

〈1〉3. Q.E.D.
PROOF: Cases 〈1〉1 and 〈1〉2 are exhaustive.

A.5 The collision-fast learning theorem

Theorem (Collision-Fast Learning) For any natural numbers e and
f , with e ≤ f ≤ n and f > 0, and any asynchronous consensus algo-
rithm Alg with independent delivery, if any set of n− f acceptors is a
quorum for Alg and there are two distinct proposers p1 and p2 such
that any set of n− e acceptors is collision-fast accepting for {p1, p2}
in Alg, then e = 0 and

a. f = 1, every learner is an acceptor, and at least one acceptor is
not a learner, or

b. p1 or p2 (or both) is an acceptor.

We transform the proof sketch in Sect. 2.4 into a rigorous proof. The
difficulty lies in handling the cases in which one or both of the pi is
an acceptor and/or there is no learner l that is neither an acceptor nor
one of the pi. We try to make the proof easier to understand by using
a tabular method of specifying scenarios illustrated by the example in
Fig. 2. In this figure:

• prop v1 and prop v2 are depth 0 events that propose the values v1
and v2, respectively. These two events are assumed to be the same
ones in all our tabular descriptions.

• Each 〈pi〉 is a depth 1 event that receives the message generated by
pi’s prop vi event.

• Each 〈b : pi〉 is a depth 2 event that receives the message sent by
agent b’s event 〈pi〉.
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Fig. 2 Example of a tabular scenario specification

Fig. 3 Another example of a tabular scenario specification

The figure specifies any scenario whose set of agents is
{p1, p2, a1, . . . ,an, l} such that:

• The depth 0 events consist of prop v1 performed by p1 and prop v2
performed by p2.

• The depth 1 events of p1 consist of 〈p1〉 followed by 〈p2〉; the depth
1 events of p2, a1, . . . , an consist of 〈p2〉 followed by 〈p1〉; and l
performs the single depth 1 event 〈p2〉.

• The only depth 2 events are performed by l and consist of the ones
in the set {〈p2 : p2〉, 〈a1 : p2〉, . . . , 〈an : p2〉, 〈l : p2〉}, performed in
any order.

Figure 2 does not imply that the agents p1, . . . , l are all different. For
example, if p2 and a1 are the same agent, then that agent first per-
forms the prop v2 event and then performs the events 〈p2〉 and 〈p1〉.
However, the picture does not specify any scenario in case certain of
the agents are equal. For example, p1 and a1 cannot be the same agent,
since the picture specifies that they perform the events 〈p1〉 and 〈p2〉 in
different orders. Similarly, p2 and l cannot be the same agent because
p2 performs the depth 1 event 〈p1〉 and l does not.

A boxed entry in a tabular specification indicates that the entry
replaces the corresponding entry for any other column that describes
the same agent. For example, Fig. 3 is the same as Fig. 2 except
for the boxed depth 1 entry of agent l. This specification allows
p2 and l to be equal. The boxed entry means that, if l equals p2,
then that agent’s only depth 1 event is 〈p2〉. As before, the agent’s
depth 0 event is prop v2 and its depth 2 events are the ones in
{〈p2 : p2〉, . . . , 〈an : p2〉}. However, if the boxed entry contained the
event 〈p1〉, then Fig. 3 would not specify any scenario when l equals p2
because it would assert that this agent did not perform the depth 1 event
〈p2〉 that generates the message received by its depth 2 〈p2 : p2〉 event.

Proof

ASSUME: 1. Alg is a nontrivial, consistent, asynchronous algorithm
with independent delivery.

2. e and f are natural numbers with
1. e ≤ f ≤ n
2. 0 < f

3. Every set of n− f acceptors is a quorum for Alg.
4. p1 and p2 are proposers with p1 �= p2.
5. Every set of n− e acceptors is collision-fast accepting

for {p1, p2}.
6. a. e > 0, or

b. 1. a. f > 1, or
b. there is a learner that is not an acceptor, or
c. every acceptor is a learner

2. p1 and p2 are both not acceptors

Fig. 4 Tabular specification of a normal scenario S j, for all j in π1 . . π2

PROVE: FALSE

〈1〉1. Choose acceptors a1, . . . , an such that
1. {a1, . . . ,an} is the set of acceptors.
2. If p1 is an acceptor, then p1 = a1.
3. If p2 is an acceptor, then p2 = an.

PROOF: Assumptions 1 (Alg asynchronous and consistent), 2.2,
and 3 and the Acceptor Lower Bound Theorem imply n ≥ 2,
so such a numbering of the acceptors exists by assumption 4
(p1 �= p2).

DEFINITION π1
∆= IF p1 is an acceptor THEN 1 ELSE 0

π2
∆= IF p2 is an acceptor THEN n−1 ELSE n

〈1〉2. Choose two proposable values v1 and v2 with v1 �= v2, and
choose a normal scenario S j of Alg satisfying the specification
of Fig. 4, for all j in π1 . . π2.
PROOF: The Value Assumption implies the existence of v1 and
v2. Assumption 4 (p1 �= p2), 〈1〉1.2, and 〈1〉1.3 imply that the
figure specifies a normal scenario S j for j = 1, . . . ,n−1, for j =
0 if p1 is not an acceptor, and for j = n if p2 is not an acceptor.
Hence, S j exists for all j in π1 . . π2. Assumption 5 (collision-
fast accepting) implies that Alg contains a scenario satisfying

p1 p2

0 prop v1 prop v2

Using assumption 1 (independent delivery), a simple induction
argument starting with this scenario shows that Alg contains the
normal scenario S j, for all j in π1 . . π2.

〈1〉3. For each learner l, and each j in π1 . . π2, choose a normal sce-
nario T j(l) such that:

1. T j(l) is in Alg.
2. S j � T j(l).
3. Agents(T j(l)\S j) = {l}.
4. l learns v1 or v2 in T j(l).

PROOF: Assumption 1 (independent delivery) implies that, by
adding events of l to S j, we can construct a normal scenario
T j(l) satisfying properties 1–3, in which l receives every mes-
sage sent by a depth 0 or depth 1 event performed by itself or by
any of the agents p1, p2, a1, . . . , an−e. (This can be done even if
l equals one of the agents p1, . . . , an.) Let Z be the set of events
in T j(l) performed by agents in {l, p1, p2,a1, . . . ,an−e}. Then Z
is a prefix of T j(l) in which l is complete to depth 2. Assump-
tion 5 (collision-fast accepting) implies that l learns a value in Z
and hence in T j(l), and assumption 1 (nontriviality) implies that
l can learn only v1 or v2.

〈1〉4. T j(l1)∪T j(l2) is a scenario in Alg, for all j in π1 . . π2 and all
learners l1 and l2.
PROOF: This is trivial if l1 = l2. If l1 �= l2, it follows from parts
1–3 of 〈1〉3, assumption 1, and condition A2 in the definition of
an asynchronous algorithm.

〈1〉5. Choose k in (π1 + 1) . .π2 such that each learner l learns v2 in
T k−1(l) and v1 in T k(l).
〈2〉1. Each learner l learns v¬i in T π i

(l), for i = 1,2.
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Fig. 5 Tabular specification of scenario Q

Fig. 6 Tabular specification of a scenario R

PROOF: We prove this for i = 2. The proof for i = 1 is
essentially symmetric. (In the proof for i = 1, we replace
a1, . . . , aπ2

by aπ1+1, . . . , an and p1 by p2.)

〈3〉1. Let l1 be a learner different from p2, and let Q be a
scenario satisfying the specification of Fig. 5 such
that

1. Q is in Alg.
2. l1 learns v1 in Q.
3. l performs the events in {〈p1 : p1〉,〈a1 :

p1〉, . . . ,〈an−e : p1〉} before any other depth
2 events.

PROOF: l1 exists by the Agent Assumption.
Figure 5 specifies scenarios, which are in Alg
by assumption 1 (independent delivery), since as-
sumption 5 implies that the scenario consisting
only of the prop v1 event is in Alg. Assumption 6
implies e > 0 or π2 = n, so {a1, . . . ,aπ2

} con-
tains {a1, . . . ,an−e} and a scenario Q therefore ex-
ists that satisfies 〈3〉1.3 and the specification of
Fig. 5. This scenario has a prefix Y with agent
set {l, p1,a1, . . . ,an−e} such that l is complete to
depth 2 in Y . Assumption 5 implies {a1, . . . ,an−e},
is a collision-fast accepting set for {p1, p2}, so l
learns a value in Y and hence in Q. By assump-
tion 1 (nontriviality), l must learn v1.

〈3〉2. Let R be a scenario satisfying the specification of
Fig. 6 such that Q � R and

1. R is in Alg
2. l1 learns v1 in R.

PROOF: There exists a scenario R satisfying Fig. 6
and having prefix Q because p2 �= p1 by as-
sumption 4, p2 �= l1 by 〈3〉1, and p2 is not in
{a1, . . . , aπ2

} by 〈1〉1.3 and the definition of π2.
Assumption 1 (independent delivery) and 〈3〉1.1
imply that R is in Alg, and 〈3〉1.2 implies that l1
learns v1 in R.

〈3〉3. Let J be the set of all depth 0 and depth 1 events in
R.

1. J is a prefix of R.
2. J is in Alg.

PROOF: J is clearly a prefix of R, so it is in Alg by
Assumption 1 (Alg asynchronous) and 〈3〉2.1.

〈3〉4. Let p be a proposer and l2 a learner such that l1 is
not in {p, l2}, and let K be a scenario in Alg such
that

1. J is a prefix of K.

Fig. 7 Tabular specification of the prefix U of Sk−1 and Sk

2. Agents(K \J) ⊆ {p, l2}∪ (A \{l1})
3. l2 learns v1 in K.

〈4〉1. We can choose p and l2 such that l1 is not in
{p, l2}.
PROOF: By the Agent Assumption.

〈4〉2. Let K be a scenario in Alg such that
1. J is a prefix of K.
2. Agents(K \J) ⊆ {p, l2}∪ (A \{l1})
3. l2 learns a value in K.

PROOF: Assumptions 2.2 ( f > 0) and 3
(quorum assumption) imply that A \{l1}
contains a quorum, and 〈3〉3.2 then implies
the existence of K in Alg satisfying 1–3.

〈4〉3. R∪K is in Alg.
PROOF: By 〈3〉3, 〈4〉2, assumption 1, and
part A2 of the definition of an asynchronous
algorithm, since Agents(R\J) = {l1} by
〈3〉2 and 〈3〉3, and {l1} is disjoint from
Agents(K \J) by 〈4〉2.2 and 〈4〉1.

〈4〉4. Q.E.D.
PROOF: 〈4〉1 and 〈4〉2 prove all of 〈3〉4
except 〈3〉4.3. Assumption 1 (consistency),
〈4〉2.3, 〈3〉2.2, and 〈4〉3 imply 〈3〉4.3.

〈3〉5. K ∪T π2
(l1) is in Alg.

〈4〉1. J � T π2
(l1) and Agents(T π2

(l1)\J) = {l1}.
PROOF: Since either p2 or aπ2

equals an, ev-
ery agent other than l1 performs the same
events in J as in T π2

(l1). The sequence of
events performed by l1 in J is a subsequence
of the events that l1 performs in T π2

(l1).
〈4〉2. Q.E.D.

PROOF: 〈3〉5 follows from 〈4〉1, 〈3〉4 and as-
sumption 1 (Alg asynchronous), since l1 not
in {p, l2} implies that {l1} is disjoint from
{p, l2}∪ (A \{l1}).

〈3〉6. Q.E.D.
PROOF: 〈3〉4.3, 〈1〉3.4, 〈3〉5, and assumption 1
(consistency) imply that l1 learns v1 in T π2

(l1).
Step 〈2〉1 (for i = 2) then follows from 〈1〉4, 〈1〉3.4,
and assumption 1 (consistency).

〈2〉2. Q.E.D.
PROOF: 〈2〉1 and 〈1〉3.4 imply that, for any individual
learner l, there exists a k in (π1 +1) . .π2 such that l learns
v2 in T k−1(l) and v1 in T k(l). That this holds for all l (with
the same k) follows from 〈1〉4 and assumption 1 (consis-
tency).

〈1〉6. Q.E.D.
〈2〉1. For all k ∈ π1 . . π2, let U be the prefix of Sk specified by

Fig. 7.
1. U is a normal scenario that is a prefix of both Sk−1

and Sk.
2. U is in Alg.
3. Agents(T k−1(l)\U) and Agents(T k(l)\U) are sub-

sets of {ak, l}, for any learner l.
PROOF: The definition of π1 and π2 imply that Fig. 7
specifies a normal scenario if π1 ≤ k ≤ π2. Parts 1 and
3 are then obvious. Part 2 follows from part 1 by 〈1〉2 and
assumption 1 (Alg asynchronous).

〈2〉2. CASE: e = 0
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〈3〉1. Choose a learner l1 such that:

IF ak is a learner THEN l1 = ak
ELSE a. l1 is not an acceptor, or

b. f > 1

PROOF: The existence of l1 follows from the level
〈2〉 case assumption (e = 0) and part b.1 of assump-
tion 6.

〈3〉2. Let l2 be a learner and let q be a proposer such that
{q, l2} and {l1,ak} are disjoint.
PROOF: The existence of a learner l2 not in {l1,ak}
follows from the Agent Assumption and 〈3〉1,
which implies that l1 = ak if ak is a learner. The
level 〈2〉 case assumption and part b.2 of assump-
tion 6 imply that neither p1 nor p2 is an acceptor,
so neither equals ak. By assumption 4 (p1 �= p2),
at least one of the pi is not equal to l1, so we can
choose q to be that pi.

〈3〉3. Let V be a behavior such that:
1. V is in Alg
2. U �V
3. Agents(V \U) ⊆ ({q, l2}∪A )\{ak, l1}
4. l2 learns a value in V .

PROOF: By 〈3〉2, ({q, l2}∪A )\{ak, l1} contains q
and l2, and by assumption 2.2 and 〈3〉1 (which im-
plies l1 = ak if l1 an acceptor), it contains at least
n− f acceptors. By 〈2〉1.2 and assumption 3 (quo-
rum assumption), we can choose V satisfying 1–4.

〈3〉4. V ∪T k−1(l1) and V ∪T k(l1) are in Alg.
PROOF: By 〈2〉1, 〈3〉3, assumption 1, and part A2
of the definition of an asynchronous algorithm.

〈3〉5. Q.E.D.
PROOF: Step 〈1〉5 asserts that l1 learns v2 in
T k−1(l1) and v1 in T k(l1). Steps 〈3〉3.4 and 〈3〉4
then imply that Alg is not consistent, contradicting
assumption 1.

〈2〉3. CASE: e > 0
〈3〉1. Let l1 and l2 be two distinct learners such that l2 �=

ak, and let W be a normal scenario such that
1. W is in Alg.
2. U �W
3. Agents(W \U) = {l2}
4. l2 learns a value in W .

PROOF: We can choose l1 and l2 by the Agent
Assumption. The level 〈2〉 case assumption (e >
0) and assumption 5 imply that there is a sub-
set B of A \{ak} that is collision-fast in Alg. for
{p1, p2}. By 〈2〉1.2 and assumption 1 (indepen-
dent delivery), we can choose a scenario W satis-
fying 1–3 containing a normal prefix X such that
Agents(X) = {l2, p1, p2}∪B and l is complete to
depth 2 in X . By definition of collision-fast, this
implies that l2 learns a value in X and hence in W .

〈3〉2. W ∪T k−1(l1) and W ∪T k(l1) are in Alg.
PROOF: By 〈1〉3.1, 〈2〉1.1 (which by 〈1〉3.2 im-
plies U is a prefix of T k−1(l1) and T k(l1)), 〈2〉1.3,
〈3〉1, assumption 1, and part A2 of the definition of
an asynchronous algorithm, since 〈3〉1 implies that
{ak, l1} and {l2} are disjoint.

〈3〉3. Q.E.D.
PROOF: 〈3〉1.4, 〈3〉2, and 〈1〉5 imply that Alg is
not consistent, contradicting assumption 1 (consis-
tency).

〈2〉4. Q.E.D.
PROOF: Cases 〈2〉2 and 〈2〉3 are exhaustive.

A.6 The hyperfast learning theorem

Theorem (Hyperfast Learning) A consistent asynchronous algo-
rithm Alg cannot be hyperfast-accepting for two different proposers.
For any integer f with 0 < f ≤ n, if every set of n− f acceptors is a
quorum for Alg and Alg is hyperfast-accepting for a proposer p, then

1. f = 1,
2. p is an acceptor that is not a learner, and
3. For every learner l, either l is an acceptor or {p, l} is the set of

proposers.

The proof follows the proof sketch in Sect. 2.5.

Proof

ASSUME: 1. Alg is a consistent asynchronous algorithm.
2. f is an integer with 0 < f ≤ n.
3. Every set of n− f acceptors is a quorum.
4. Alg is hyperfast-accepting for a proposer p.

PROVE: 1. Alg is not hyperfast-accepting for any proposer other
than p.

2. f = 1.
3. p is an acceptor and not a learner.
4. For every learner l, either l is an acceptor or {p, l} is the

set of proposers.

〈1〉1. ASSUME: 1. q is a proposer.
2. l is a learner.
3. v is a proposable value.
4. Alg is hyperfast-accepting for q.

PROVE: There exists a scenario S in Alg such that
Agents(S) = {q, l} and l learns v in S.

〈2〉1. Let T be a scenario in Alg such that T has depth at most
1, has as its only source event one in which q proposes v,
and contains an event el in which l learns v.
PROOF: T exists by the level 〈1〉 assumptions and the def-
inition of hyperfast-accepting.

〈2〉2. Let S be the prefix of T consisting of all events e in T such
that e �S el . Then Agents(S) = {q, l}.
PROOF: Since el has depth at most 1 and 〈2〉1 implies that
the only events of T with depth 0 are performed by q, any
event of T that precedes or equals el is performed by q or
l.

〈2〉3. Q.E.D.
PROOF: By 〈2〉1, 〈2〉2, and assumption 1 (Alg asyn-
chronous).

〈1〉2. ASSUME: Alg is hyperfast-accepting for a proposer p2 different
from p.

PROVE: FALSE
〈2〉1. Choose learners l1 and l2 such that {p, l1} and {p2, l2}

are disjoint.
PROOF: The Agent Assumption implies the existence of
l1 and l2.

DEFINITION p1
∆= p

〈2〉2. Choose values v1 and v2 with v1 �= v2 and, for each i =
1,2, let Si be a scenario in Alg such that Agents(Si) =
{pi, li} and li learns vi in Si.
PROOF: v1 and v2 exist by the Value Assumption. The Si
exist by 〈1〉1, the level 〈1〉 assumption, and assumption 4
(Alg hyperfast for p).

〈2〉3. Q.E.D.
PROOF: 〈2〉1, 〈2〉2, assumption 1 (Alg asynchronous),
and the Scenario Union Lemma imply S1 ∪ S2 is in Alg.
By 〈2〉2, this implies that Alg is not consistent, contradict-
ing assumption 1.
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〈1〉3. ASSUME: a. f > 1, or
b. p is not an acceptor, or
c. p is a learner, or
d. There exists a learner l and proposer q such that:

1. l is not an acceptor, and
2. q is not in {p, l}

PROVE: FALSE
〈2〉1. Choose learners l and l2 and a proposer p2 such that

1. A \{p, l} contains a quorum.
2. {p, l} and {p2, l2} are disjoint.

〈3〉1. CASE: f > 1 or p is not an acceptor.
PROOF: The Agent Assumption implies that we
can choose l, p2, and l2 satisfying 〈2〉1.2. Assump-
tion 2 ( f > 0), assumption 3 (quorum assumption),
and the case assumption then implies 〈2〉1.1.

〈3〉2. CASE: p is a learner.
PROOF: In this case, assumption 2 ( f > 0) and as-
sumption 3 (quorum assumption) imply that 〈2〉1.1
holds with l = p. The existence of p2 and l2 satis-
fying 〈2〉1.2 then follows from the Agent Assump-
tion.

〈3〉3. CASE: 1. p is not a learner
2. There exists a learner l and proposer q

such that
1. l is not an acceptor, and
2. q is not in {p, l}

PROOF: Part 2.1 of the case assumption, assump-
tion 2 ( f > 0), and assumption 3 (quorum assump-
tion) imply 〈2〉1.1. Parts 1 and 2.2 of the case as-
sumption and the Agent Assumption imply that we
can choose a learner l2 such that 〈2〉1.2 is satisfied
with p2 = q.

〈3〉4. Q.E.D.
PROOF: The level 〈1〉 case assumption implies that
cases 〈3〉1, 〈3〉2, and 〈3〉3 are exhaustive.

〈2〉2. Let S be a scenario in Alg with Agents(S) ⊆ {p2, l2} ∪
(A \{p, l}) such that l2 learns a value v2 in S.
PROOF: S exists by 〈2〉1.1 and the definition of a quorum
(substituting the empty scenario for S in the definition).

〈2〉3. Let v1 be a proposable value different from v2 and let T
be a scenario in Alg with Agents(T ) = {p, l} such that l
learns v1 in T .
PROOF: T exists by assumption 4 (Alg hyperfast for p),
〈2〉1 (l a learner) and 〈1〉1.

〈2〉4. Q.E.D.
PROOF: 〈2〉1.2, 〈2〉2, 〈2〉3, assumption 1 (Alg asyn-
chronous), and the Scenario Union Lemma imply that
S∪ T is in Alg. By 〈2〉2 and 〈2〉3, this implies that Alg
is not consistent, contradicting assumption 1.

〈1〉4. Q.E.D.
PROOF: The theorem follows from 〈1〉2 and 〈1〉3 by predicate
logic.

B Formal statements of the results

We now formalize our definitions and results in TLA+ [11]. We do
not explain TLA+ notation here, but readers familiar with simple logic
and set theory should be able to understand most of the formalism.
The results are expressed as definitions, assumptions, and theorems in
the following TLA+ module. This is a constant module, so it makes
no use of TLA (the temporal logic of actions). TLA+ serves only as a
convenient language for writing formulas of ordinary first-order logic
and set theory. Although the module contains some comments, most of
the explanation is provided by the informal presentation in Sect. 2.

MODULE LowerBounds

EXTENDS Naturals, Sequences, FiniteSets

We take the conventional approach of representing a relation R by
a set of ordered pairs, where 〈x,y〉 ∈ R means x R y, and we define
TransitiveClosure(R) to be the transitive closure of relation R. We lo-
cally define Dom and Rng to be the domain and range of R, and we
recursively define TC[i] to be Ri+1, the composition of R with itself
i+1 times.
TransitiveClosure(R) ∆=

LET Dom
∆= {r [1] : r ∈ R}

Rng
∆= {r [2] : r ∈ R}

TC [i ∈ Nat ] ∆=
IF i = 0 THEN R

ELSE {〈d , e〉 ∈ Dom×Rng :
∃c ∈ Dom ∩Rng : ∧〈d , c〉 ∈ TC [i−1]

∧〈c, e〉 ∈ R}
IN UNION {TC [i ] : i ∈ Nat}

We declare the parameters of the specification, which are all constants,
and we state the Agent and Value assumptions. We adopt the conven-
tion of using singular nouns as names, so x ∈ S can be read as “x is an
S”.
CONSTANTS Proposer , The set of proposers.

Acceptor , The set of acceptors.
Learner , The set of learners.
PVal , The set of proposable values.
Message The set of all possible messages.

ASSUME Agent Assumption
∧ IsFiniteSet(Acceptor)
∧∃p1, p2 ∈ Proposer : p1 �= p2
∧∃ l1, l2 ∈ Learner : l1 �= l2

ASSUME Value Assumption
∃v1, v2 ∈ PVal : v1 �= v2

We define n to be the number of acceptors and Agent to be the set of
all proposers, learners, and acceptors.
n

∆= Cardinality(Acceptor)
Agent

∆= Proposer ∪Learner ∪Acceptor

We now formalize the definitions of Sect. 2.1. We define an event to
be a record, using record notation instead of subscripts—for example,
writing e.num instead of enum. Each record has proposed, learned, and
rcvd fields, using the special value NotAVal to indicate that no value is
proposed or learned, and letting e.rcvd equal 〈〉 if e is not a message-
receiving event. We define Event to be the set of all events.
NotAVal

∆= CHOOSE v : v /∈ PVal

Event
∆= [agent : Agent ,

num : Nat \{0},
msg : Message,

proposed : PVal ∪{NotAVal},
learned : PVal ∪{NotAVal},
rcvd : (Message×Agent× (Nat \{0}))∪{〈〉}]

We write �S as Pre(S). We define Scenario to be the set of all scenarios
and Pre f ix(T ) to be the set of prefixes of a scenario T .
Pre(S) ∆= TransitiveClosure({〈d ,e〉 ∈ S×S :

∨ ∧d .agent = e.agent

∧d .num ≤ e.num

∨e.rcvd = 〈d .msg ,d .agent ,d .num〉})
Scenario

∆=
{S ∈ SUBSET Event :

∀e ∈ S :
∧ (e.proposed �= NotAVal) ⇒ (e.agent ∈ Proposer)
∧ (e.learned �= NotAVal) ⇒ (e.agent ∈ Learner)
∧∀d ∈ S : (d .agent = e.agent)∧ (d .num = e.num) ⇒ (d = e)
∧ (e.num > 1) ⇒ ∃d ∈ S : ∧d .agent = e.agent

∧d .num = e.num−1
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∧ (e.rcvd �= 〈〉) ⇒ ∃d ∈ S \{e} : e.rcvd = 〈d .msg , d .agent , d .num〉
∧∀d ∈ S : (〈d , e〉 ∈ Pre(S))∧ (〈e, d〉 ∈ Pre(S)) ⇒ (d = e) }

Prefix (T ) ∆= {S ∈ SUBSET T :
∀d ∈ T , e ∈ S : (〈d , e〉 ∈ Pre(T )) ⇒ (d ∈ S)}

S �T
∆= S ∈ Prefix (T )

We define Algorithm to be the set of all algorithms and
AsynchronousAlgorithm to be the set of all asynchronous algorithms,
and we assert the Scenario Union Lemma as a theorem.
Algorithm

∆= SUBSET Scenario

Agents(S) ∆= {e.agent : e ∈ S}

AsynchronousAlgorithm
∆=

{Alg ∈ Algorithm :
∧∀T ∈ Alg : Prefix (T ) ⊆Alg

∧∀T , U ∈ Alg :
∀S ∈ Prefix (T )∩Prefix (U ) :

(Agents(T \S)∩Agents(U \S) = {}) ⇒ (T ∪U ∈ Alg)}

THEOREM Scenario Union Lemma
∀Alg ∈ AsynchronousAlgorithm :
∀T , U ∈ Alg : (Agents(T )∩Agents(U ) = {}) ⇒ (T ∪U ∈ Alg)

We now define the sets of nontrivial, consistent, and consensus algo-
rithms.
NontrivialAlgorithm

∆=
{Alg ∈ Algorithm :

∀S ∈ Alg :
∀e ∈ S :

(e.learned �= NotAVal) ⇒ (∃d ∈ S : e.learned = d .proposed)}

ConsistentAlgorithm
∆=

{Alg ∈ Algorithm :
∀S ∈ Alg :
∀d , e ∈ S : (d .learned �= NotAVal)∧(e.learned �= NotAVal)

⇒ (d .learned = e.learned)}

ConsensusAlgorithm
∆= NontrivialAlgorithm ∩ConsistentAlgorithm

We now formalize the definitions, assumptions, and results of Sec-
tion 2.2. We define IsAcceptingFor(Q, p,Alg) to mean that the set Q
of acceptors is an accepting set for proposer p in algorithm Alg.
IsAcceptingFor(Q , p, Alg) ∆=
∀v ∈ PVal , l ∈ Learner :
∃S ∈ Alg : ∧Agents(S) ⊆ {p, l}∪Q

∧∃d , e ∈ S : ∧d .proposed = v

∧d .agent = p

∧e.learned = v

∧e.agent = l

THEOREM Accepting Lemma
∀Alg ∈ ConsistentAlgorithm ∩AsynchronousAlgorithm ,

p1, p2 ∈ Proposer , l1, l2 ∈ Learner , Q1, Q2 ∈ SUBSET Acceptor :
IsAcceptingFor(Q1, p1, Alg) ∧ IsAcceptingFor(Q2, p2, Alg)

⇒ ({p1, l1}∪Q1) ∩ ({p2, l2}∪Q2) �= {}

THEOREM Acceptor Lower Bound Theorem
∀f ∈ 0 . . n , Alg ∈ ConsistentAlgorithm ∩AsynchronousAlgorithm :

(∀Q ∈ SUBSET Acceptor :
(Cardinality(Q) = n− f ) ⇒∀p ∈ Proposer :

IsAcceptingFor(Q , p, Alg))
⇒ ∨n > 2∗ f

∨ ∧ f = 1
∧Cardinality(Agent) = 3
∧∃a1, a2, a3 ∈ Agent : ∧Acceptor = {a1, a2}

∧Proposer = {a1, a3}
∧Learner = {a2, a3}

We now formalize the definitions and results of Sect. 2.3. We define
Depth(e,S) to be the depth of event e in scenario S. Because TLA+ al-
lows recursive definitions only of functions, not operators, we locally
define D[d] to equal the depth of event d in S. We also make the fol-
lowing local definitions:
•PrecedesInAgent(d) is the set of events in S performed by d.agent

that precede d.
•SendsTo(d) is the event that sends the message received by d, if d

receives a message.
•Max(X) is the maximum of a finite set X of numbers, or 0 if X is

empty.

We define Sources(S) to be the set of all sources of scenario S
Depth(e, S) ∆=

LET PrecedesInAgent(d) ∆= {c ∈ S : ∧c.agent = d .agent

∧c.num < d .num }
SendsTo(d) ∆= CHOOSE c ∈ S : d .rcvd=〈c.msg , c.agent , c.num〉
Max (X ) ∆= IF X = {} THEN 0

ELSE CHOOSE i ∈ X : ∀j ∈ X : i ≥ j

D [d ∈ S ] ∆=
Max ({Max ({D [c] : c ∈ PrecedesInAgent(d)}),

IF d .rcvd �= 〈〉 THEN 1+D [SendsTo(d)] ELSE 0})
IN D [e]

Sources(S) ∆= {e ∈ S : ∀d ∈ S \{e} : 〈d , e〉 /∈ Pre(S)}

IsFastAcceptingFor(M , p, Alg) ∆=
∀v ∈ PVal , l ∈ Learner :
∃S ∈ Alg : ∧Agents(S) ⊆ {p, l}∪M

∧∀e ∈ S : Depth(e, S) ≤ 2
∧∃e ∈ S : ∧e.proposed = v

∧e.agent = p

∧{e} = Sources(S)
∧∃e ∈ S : ∧e.learned = v

∧e.agent = l

IsQuorum(Q , Alg) ∆=
∀p ∈ Proposer :

∧ IsAcceptingFor(Q , p, Alg)
∧∀ l ∈ Learner , S ∈ Alg :

∃T ∈ Alg : ∧S �T

∧Agents(T \S) ⊆ {p, l}∪Q

∧∃e ∈ T : ∧e.agent = l

∧e.learned �= NotAVal

THEOREM Fast Accepting Lemma
∀Alg ∈ ConsistentAlgorithm∩AsynchronousAlgorithm ,

p1, p2, pq ∈ Proposer ,

l1, l2, lq ∈ Learner ,

M1, M2, Q ∈ SUBSET Acceptor :
∧ IsFastAcceptingFor(M1, p1, Alg)
∧ IsFastAcceptingFor(M2, p2, Alg)
∧ IsQuorum(Q , Alg)
∧p1 �= p2
∧ (p1 /∈ M2)∧ (p2 /∈ M1)
∧ l1 /∈ {p2, pq , lq}∪ (M2\M1)∪Q

∧ l2 /∈ {p1, pq , lq}∪ (M1\M2)∪Q

∧{pq , lq}∩M1∩M2 = {}
⇒ (M1∩M2∩Q �= {})

THEOREM Fast Learning Theorem
∀f ∈ 1 . . n :
∀e ∈ 0 . . f :
∀Alg ∈ ConsensusAlgorithm ∩AsynchronousAlgorithm :
(∀Q ∈ SUBSET Acceptor :

(Cardinality(Q) = n− f ) ⇒ IsQuorum(Q , Alg))
⇒∀p1, p2 ∈ Proposer :

∧p1 �= p2
∧∀M ∈ SUBSET Acceptor :

(Cardinality(M ) = n−e) ⇒
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∧ IsFastAcceptingFor(M , p1, Alg)
∧ IsFastAcceptingFor(M , p2, Alg)

⇒ ∨n > 2∗e + f

∨Learner = {p1, p2}

We now formalize the definitions and results of Sect. 2.4.
NormalScenario

∆=
{S ∈ Scenario :

∧∀e ∈ Sources(S) : e.proposed �= NotAVal

∧∀d , e ∈ S :
(d �= e)∧ (d .agent = e.agent) ⇒ ∨d .rcvd = 〈〉

∨d .rcvd �= e.rcvd

∧∀e ∈ S \Sources(S) : e.rcvd �= 〈〉
∧∀d1, d2, e2 ∈ S :

∧d1.agent = d2.agent

∧d1.num ≤ d2.num

∧e2.rcvd = 〈d2.msg , d2.agent , d2.num〉
⇒ ∃e1 ∈ S : ∧e1.agent = e2.agent

∧e1.num ≤ e2.num

∧e1.rcvd = 〈d1.msg , d1.agent , d1.num〉
∧∀d , e ∈ S : (e.rcvd = 〈d .msg , d .agent , d .num〉)

⇒ (Depth(e, S) = 1+Depth(d , S))}

IsCompleteToDepth(a , k , S) ∆=
LET CTD [b ∈ Agent , i ∈ 0 . . k ] ∆=

IF i = 0 THEN TRUE

ELSE ∧∀c ∈ Agents(S) : CTD [c, i−1]
∧∀d ∈ S :

Depth(d , S) < i

⇒ ∃e ∈ S :
∧e.agent = b

∧e.rcvd = 〈d .msg , d .agent , d .num〉
IN CTD [a , k ]

IsCollisionFastAcceptingFor(M , P , Alg) ∆=
∀Q ∈ (SUBSET P)\{{}} :
∀v ∈ [Q →PVal ] :
∃T ∈ Alg :
∧T = Sources(T )
∧∀p ∈ Q : ∃e ∈ T : (e.agent = p)∧ (e.proposed = v [p])
∧∀ l ∈ Learner , S ∈ Alg ∩NormalScenario :

∧T � S

∧Agents(S) = {l}∪Q ∪M

∧ IsCompleteToDepth(l , 2, S)
⇒∃e ∈ S : (e.agent = l)∧ (e.learned �= NotAVal)

HasIndependentDelivery(Alg) ∆=
∀S ∈ Alg ∩NormalScenario :
∀e ∈ S , a ∈ Agent :

∧∀d ∈ S : ∧d .agent = e.agent

∧d .num < e.num

⇒∃c ∈ S : ∧c.agent = a

∧c.rcvd = 〈d .msg , d .agent , d .num〉
∧¬∃d ∈ S : ∧d .agent = a

∧d .rcvd = 〈e.msg , e.agent , e.num〉
∧∀d ∈ S : (Depth(d , S) < Depth(e, S))

⇒∃c ∈ S : ∧c.agent = a

∧c.rcvd = 〈d .msg , d .agent , d .num〉
⇒ ∃c ∈ Event : ∧c.agent = a

∧c.rcvd = 〈e.msg , e.agent , e.num〉
∧S ∪{c} ∈ Alg

THEOREM Collision-Fast Learning Theorem
∀f ∈ 1 . . n :
∀e ∈ 0 . . f :
∀Alg ∈ ConsensusAlgorithm ∩AsynchronousAlgorithm :

∧HasIndependentDelivery(Alg)
∧∀Q ∈ SUBSET Acceptor :

(Cardinality(Q) = n− f ) ⇒ IsQuorum(Q , Alg)
⇒∀p1, p2 ∈ Proposer :

∧p1 �= p2
∧∀M ∈ SUBSET Acceptor :

(Cardinality(M ) = n−e)
⇒ IsCollisionFastAcceptingFor(M , {p1, p2}, Alg)

⇒ ∧e = 0
∧ ∨ ∧ f = 1

∧Learner ⊆Acceptor

∧¬(Acceptor ⊆ Learner)
∨ (p1 ∈ Acceptor)∨ (p2 ∈ Acceptor)

We now formalize the definitions and results of Sect. 2.5.
IsHyperfastAcceptingFor(p, Alg) ∆=

∀v ∈ PVal , l ∈ Learner :
∃S ∈ Alg : ∧∀e ∈ S : Depth(e, S) ≤ 1

∧∃e ∈ S : ∧Sources(S) = {e}
∧e.agent = p

∧e.proposed = v

∧∃e ∈ S : ∧e.agent = l

∧e.learned =v

THEOREM Hyperfast Learning Theorem
∀f ∈ 1 . . n :

∀Alg ∈ ConsistentAlgorithm ∩AsynchronousAlgorithm :
∧∀p, q ∈ Proposer :

∧ IsHyperfastAcceptingFor(p, Alg)
∧ IsHyperfastAcceptingFor(q , Alg)
⇒ (p = q)

∧ (∀Q ∈ SUBSET Acceptor : (Cardinality(Q) = n− f )
⇒ IsQuorum(Q , Alg))

⇒∀p ∈ Proposer :
IsHyperfastAcceptingFor(p, Alg)

⇒ ∧ f = 1
∧p ∈ Acceptor \Learner

∧∀ l ∈ Learner : ∨ l ∈ Acceptor

∨Proposer = {p, l}
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