IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 7, JULY 1989

847

The Accuracy of the Clock Synchronization Achieved
by TEMPO in Berkeley UNIX 4.3BSD

RICCARDO GUSELLA, STUDENT MEMBER, IEEE, AND STEFANO ZATTI, MEMBER, IEEE

Abstract—We discuss the upper and lower bounds on the accuracy
of the time synchronization achieved by the algorithm implemented in
TEMPO, the distributed service that synchronizes the clocks of Berke-
ley UNIX® 4.3BSD systems. We show that the accuracy is a function
of the network transmission latency, and depends linearly upon the
drift rate of the clocks and the interval between synchronizations.
Comparison with other clock synchronization algorithms reveals that
TEMPO may achieve better synchronization accuracy at a lower cost.

Index Terms—Clock synchronization, distributed systems, fault-tol-
erance, master-slave, time service.

I. INTRODUCTION

HIS paper discusses the upper and lower bounds on

the accuracy of the time synchronization achieved by
the algorithms implemented in TEMPO, a distributed
clock synchronizer running on Berkeley UNIX 4.3BSD
systems.

TEMPO, which works in a local area network, consists
of a collection of time daemons (one per machine) and is
based on a master-slave structure [3], [4].

Figs. 1-4 sketch the way TEMPO works. A master time
daemon measures the time difference between the clock
of the machine on which it is running and those of all
other machines. The master computes the network time as
the average of the times provided by nonfaulty clocks. A
clock is considered faulty if its value is more than a small
specified interval away from the values of the clocks of
the majority of the other machines. (The clock of Slave 3
in Fig. 2 is faulty.) The master then sends to each slave
time daemon, also to those with faulty clocks, the correc-
tion that should be performed on the clock of its machine.
Since the correction can be negative, in order to preserve
the monotonicity of the clocks’ time functions, TEMPO
implements it by slowing down (or speeding up) the clock
rates [1]. This process is repeated periodically. Because
the correction is expressed as a time difference rather than

Manuscript received March 21, 1987. This work was supported by the
Defense Advanced Research Projects Agency (DoD), Arpa Order 4871
monitored by the Naval Electronics Systems Command under Contract
N00039-84-C-0089, and by the CSELT Corporation.

R. Gusella is with the Computer Science Division, Department of Elec-
trical Engineering and Computer Science, University of California. Berke-
ley, CA 94720.

S. Zatti is with IBM Rescarch, Zurich Laboratory, Sdumerstrasse 4.
CH-8803 Rueschlikon, Switzerland.

IEEE Log Number 8928285.

®UNIX is a registered trademark of AT&T Bell Laboratories.

B '0
Master
3:05

I y -10 L5 l 20
Slave 1 Slave 2 Slave 3
2:55 3:00 3:25

Fig. I. The measurements.

Master
3:05

]‘.,-f—s /
/
@ |
!
i
i
'

\
Slave 2 N\

Q

I 5 -10

)

Slave 1 Slave 3
2:55 3:00 3:25
0-10-5
Av = ——— = -5
3

Fig. 2. The computation of the average.

an absolute time, transmission delays do not interfere with
synchronization.

When a machine comes up and joins the network, it
starts a slave time daemon, which asks the master for the
correct time and resets the machine’s clock before any
user activity can begin. TEMPO therefore maintains a
single network time in spite of the drift of clocks away
from each other.

An election algorithm that elects a new master should
the machine running the current master crash, the master
terminate (for example, because of a run-time error), or
the network be partitioned, ensures that TEMPO provides
continuous, and therefore reliable service [5]. However,
in the following discussion we will assume that elections
do not occur, as we are only concerned with determining
the accuracy achieved by the clock synchronization al-
gorithms.

0098-5589/89/0700-0847$01.00 © 1989 1EEE

Authorized licensed use limited to: UNIVERSIDAD DE SALAMANCA. Downloaded on April 11,2024 at 14:46:24 UTC from IEEE Xplore. Restrictions apply.

848 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 7. JULY 1989

Master
3:05

a >
;*5 lA 25
Slave 1 Slave 2 Slave 3
2:55 3:00 3:25
Fig. 3. The correction of the clocks.
Master
3:00
aQ >

|
| |

CICINE

Slave 1 Slave 2 Slave 3
3:00 3:00 3:00

=

Fig. 4. Clocks are now synchronized.

II. DEFINITIONS AND GENERAL ASSUMPTIONS
A physical clock generates an approximation, as pre-
cise as possible, of ¢, the universal Galilean time. A real-
valued, continuous, and everywhere derivable function
C(t) describes its behavior. Let p be the absolute value
of the maximum drift rate over all clocks from the uni-
versal time; we have

dC (1)
dt

l-—p= =1 +p.

(1)

Two clocks are said to be synchronized at time t; if their
associated functions have the same value, i.e., in case of
clocks of machines A and B, if C,(#;) = Cg(tp).

Let R be a constant. Two or more clocks are within
range R at time t, if the difference between any two of
them is bounded by R:

|CA(f0) - CB(’O)' =R
Lemma 1: Fort = t,
(I1=p0)(ty —1t0) = C(t;) = C(1o) = (1 +p)(1; — 15).

Proof: Immediate by integrating (1). |
Lemma 2: The absolute value of the relative drift rate
of any two clocks satisfying (1) is at most 2p

d(Ca(1) — Cy(1))
dt

=2

Proof: From (1), we have for C,

dCy(1)
1 — < L <] +
P dt p
and for Cp
dCg(t)
-1 — - < —1 4 p.
T-rs= dt P

Adding term by term we obtain

dC,(t) dCg(r)
—2p < —°— — ————= < 2p.
p= dt dt b

Lemma 2 follows. il

A direct consequence of Lemma 2 is that, if two clocks
are synchronized at time #,, at any later time 7, their values
can differ at most by +2p(t, — #;).

III. THE CLoCK DIFFERENCE MEASUREMENT
ALGORITHM

A time daemon program on machine A measures the
time difference between the clock of machines A and B by
timestamping a message at time C,(f,) and sending it to
machine B. The kernel of machine B timestamps that mes-
sages at time Cg(#;) and sends it back.' Upon receipt of
the message from machine B, the time daemon reads the
time C,(t;). This process is represented in Fig. 5. As
derived in Theorem 1 below, the time daemon can then
estimate A 5(¢), the difference between the clocks of ma-
chines 4 and B, as

Ca(t1) + Cu(t)
2
As indicated, A,g is a function of time, but we assume

that its variation in the interval r; — #; is so small that we
can write

— Cg(ty).

Aup(13) = Bgp(t)) = Agp.

Also, notice that Ag, = —A 5.

Theorem 1: Let T, and T,,,, be the minimal possible
transmission times from A4 to B and from B to A4, respec-
tively. Let us fix a bound, Ty = 2 max (T, T,;,), on
the round-trip time, i.e., C4(13) — C,(t;) = Ty Then,
the maximum error in the estimation of A g is

TM — 2 min (TmABa T;nm)
> (2)

Proof: Let Ts,, and Ts,, be the actual transmission
times from A to B and vice versa. We have

TmAB + TmBA = TSAB + TSBA = TM»

e = = 0.

'"TEMPO implements this exchange of messages using the TimeStaip
and TimeStampReply messages of the DARPA Internet Control Message
Protocol (ICMP) [L1]. As soon as the associated interrupt of the network
interface is served, the kernel of a remote machine processes a TimeStamp
message by changing its type field to TimeStampReply, writing the clock
value in the message, and sending it back without invoking a user process.
It is simply a variant of an echo protocol. We can therefore consider that
the remote time query occurs instantancously at the remote machine at time
1.

Authorized licensed use limited to: UNIVERSIDAD DE SALAMANCA. Downloaded on April 11,2024 at 14:46:24 UTC from IEEE Xplore. Restrictions apply.

GUSELLA AND ZATTI: ACCURACY OF CLOCK SYNCHRONIZATION ACHIEVED BY TEMPO 849

Machine Cglty) Time
8 —
/’\\
PR
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ A
/ \
/ \
/ \
/ \
/ N\
Machine / \‘
CA“I) CA“S)
Tm
Fig. 5.
and also
max (TSAH) = TM - TmBA*
max (TSBA) = TM - TmAB (3)

for the hypotheses.
We can now compute

0 Ca(ty) — Cu(t)) = —Aup + Ts,p,

6, = Cy(ts) = Cp(ra) = Ayp + Ty,
and, if E,p is our estimate of A g,

o= 6 — 61 _ Ca(t) + Cy(t)
ap = Ty = >

T SBA 1 SaB
) ()

— Cy(ty)

= Agp t

From (3) we can derive

_(TM - 2Tm54) = TSBA - TSAB = (TM - 2TMAB)' (5)
By substituting (5) into (4), we get

AAB _ TM _22 Tmu,q <

If we define

B = Ayp + 2 2. (6)

TM — 2 min (me’ TmBA) .
2 =

€ =

03

the relations

Tm - 2Tm Ty — 2Tm 4
> —Z—AB and e = %
hold for the definition of T},, and the theorem, which can
also be written as

|E — Ag| < e, (7)
follows. o
In general 7, ,, and T,,,, will be different, as in the case

of a ring network where the information flow moves in
the same direction. However, these two times can also be
different in a bus network because, for example, of dif-
ferent interrupt structures of the two machines.

In the actual implementation, several round-trip mes-
sages are exchanged and the minimum values of §, and 6,
are used in the computation of E,z. This reduces the var-

Authorized licensed use limited to: UNIVERSIDAD DE SALAMANCA. Downloaded on April 11,2024 at 14:46:24 UTC from IEEE Xplore. Restrictions apply.

iances of the transmission times in the two directions and
provides a better estimate of A .

If the estimate E,z is used to correct the clock of ma-
chine B, the two machines’ clocks are, upon synchroni-
zation, within range e.

Corollary 1: The lower bound for the error € is

‘ Tois = Tousa |) .
Proof: Immediate by substituting the expression for
Ty into (2). |

Corollary 2: The measurement algorithm allows a time
daemon to compute the clock difference between any two
other machines with maximum error 2e.

Proof: Let us suppose that A sends clock difference
measurement messages to any two machines, for instance
machines B and C, then

Ay = Cy(t) — Cyl(1),
Cu(2) — Ce(1),
Age = Aye — Ay,

Epp =484 *c¢

Auc

I

Ejo =44t e
Ege = Esc — Eap.
It follows

EBC = AAC - AAB + 2e = ABC + 2e. [

IV. THE SYNCHRONIZATION ALGORITHM

The master time daemon, using the clock difference
measurement algorithm, computes the time differences
between its clock and the clocks of slave machines. In
order to prevent malfunctioning clocks as well as clocks
with abnormally large drift rates to adversely affect other
clocks, a fault-tolerant averaging function is applied to
these differences. It selects the largest sets of clocks that
do not differ from each other more than a small quantity
v and averages the differences of these clocks. For in-
stance, in the example of Figs. 1, 2, 3, and 4, assuming
that v is 10 minutes, the fault-tolerant function selects the
set consisting of the clock of the Master, the clock of Slave
1, and that of Slave 2. Clocks that are not selected by the
fault-tolerant function are considered faulty. Last, the
master time daemon asks each slave to correct its clock
by a quantity equal to the difference between the average
value provided by the fault-tolerant function and the pre-
viously measured difference between the clocks of the
master and the slave machines. (The master time daemon,
as suggested in Fig. 3, also corrects the clock of the ma-
chine on which it runs using the same method.) This pro-
cess is repeated every T seconds. Notice that the synchro-
nization algorithm produces the appropriate correction
value for every clock, including the faulty ones.

For TEMPO to be reliable, it is necessary that all prop-
erly functioning clocks be within y seconds when the
master starts a synchronization round. The constant v is
therefore chosen as a function of the clock drift rate; the
interval between synchronization rounds, T; and the mea-
surement errors as derived in Theorem 3 below.

Theorem 2: If the master, using the synchronization al-
gorithm described above synchronizes a number of ma-

850 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 7. JULY 1989

chines, then any two nonfaulty clocks are, once the syn-
chronization is performed, within range 4e.

Proof: Let Q be the set of machines selected by the
fault-tolerant averaging function and | Q | its cardinality.
The average of the measurements is then

1 1 lo| -1
— D E,=— 2 A =l
o] /e " || ee ||

where we have assumed that the clock of the master A is
also nonfaulty2 and A4 = 0 by definition. (This implies
that also E,4 = 0.) _ _

If we use the symbols A for (1/|Q|) Ejcp Ayy and E
for (1/|Q|) L,cp E4 in order to simplify the notation,
we can rewrite (8) as

e, (8)

Al L

E-a|=<e 9)

where we have defined ¢’ = e.
The correction performed on the clock of machine K is

Cx = E - Ex,

from which, by adding the quantity A,x — A, and for (7)
and (9) we obtain

ICK + AAK - ZI = IE - K' + |AAK - EAK|
< ¢ + e

Let us represent with A the difference between the
clocks of machines B and C after the correction is made

Ape = (Aqc + cc) — (Aup + cB).
By adding and subtracting A we can write

Ape = (Bac + cc — A) = (Agg + 3 — A),

and also
|A[,;(;| =< ICC + AAC - Zi + IZ — Cg — AABI
< 2¢’ + 2¢ = 4e,
which completes the proof. OJ

The following theorem summarizes the previous re-
sults.

Theorem 3: If the master time daemon synchronizes
every T seconds a set of machines using the algorithm
above described, then, at any time, all nonfaulty clocks
are within range 4¢ + 2pT.

Proof: The first term, 4¢, as per Theorem 2, ac-
counts for the inaccuracy of synchronization after the
clocks have been reset. The second term, as per Lemma

*This is not a necessary assumption. The algorithm and the derivations
are valid irrespective of whether or not the master’s clock is selected by
the fault-tolerant averaging function. Refer, however, to the next section
of this paper for a brief discussion of the types of faults that TEMPO can
tolerate.

Authorized licensed use limited to: UNIVERSIDAD DE SALAMANCA. Downloaded on April 11,2024 at 14:46:24 UTC from IEEE Xplore. Restrictions apply.

2, accounts for the maximum possible drift of any two
clocks during the time betwen two subsequent
synchronizations.]

V. DiscussION

It is important to notice that in the derivation of the
bounds on the time accuracy we have made no assumption
whatsoever about the statistical distribution of the trans-
mission times between two machines, nor have we as-
sumed that these distributions are the same in the two di-
rections of communication.

It should also be noted that the requirements on the
maximum round-trip time 7, can be verified by the mas-
ter, in the notation used above, by computing C,(#3) —
C4(1,). Even though messages can be arbitrarily delayed,
the master is always able to reject measurements that do
not satisfy the conditions of Theorem 1.

In our implementation of TEMPO for the Ethernet local
area network, we have chosen a value of 20 milliseconds
for T, Although the Digital Equipment VAX Hardware
Handbook states that p can be as high as 107*, we have
verified, using a high-resolution frequency meter, that the
clocks of the VAX’s used in our experiments display drift
rates smaller than 2 parts in 10°. Since the minimum
transmission delay from machine to machine can be esti-
mated to be 5 milliseconds (including kernel protocol
handling and the scheduling delays of the master pro-
cess), and since TEMPO synchronizes the clocks every 4
minutes, the maximum error in Theorem 3 is 30 milli-
seconds.

Let us call e,z the actual error in the measurement of
the clock difference between machines A and B. From (6)
we have —¢ < €43 < +e. Therefore, the actual quantity
that corresponds to €' in (9) is, from (8) (1//Q|) Lscp
€4, that is the average of the actual errors of the mea-
surements between the master A and the other machines
in the set Q. As such, by the Strong Law of Large Num-
bers, this quantity converges in probability to the mean of
the random variables that models the measurement errors.
Under the condition of identically distributed transmis-
sion times in the two communication directions, which is
satisfied in the case of the Ethernet, this mean, as can be
recognized in (6), is zero. While according to Theorem 3
the first component of the global error can be as large as
4¢, the algebraic manipulations in the proof of Theorem
2 show that it can be separated into two parts, one of
which, 2¢’, for what we have just seen, should be very
small.

In measurements taken in our environment, where the
time daemons synchronized the clocks of about 15 ma-
chines, we rarely found the time difference between clocks
to be larger than 25 milliseconds, with the mean between
18 and 20 milliseconds. Since the drift rate of the clocks
makes them diverge at most 10 milliseconds in 4 minutes,
we estimated that the synchronization inaccuracies due to

GUSELLA AND ZATTI: ACCURACY OF CLOCK SYNCHRONIZATION ACHIEVED BY TEMPO 851

the error described in Theorem 2 amount to about 10
milliseconds on the average.

As previously observed, a clock is considered faulty if
it is not selected by the fault-tolerant averaging function.
Therefore, great attention must be paid to the appropriate
choice for the value of +y. If y is too small, only a few
clocks may be selected; if it is too large, malifunctioning
clocks can reduce the precision of the synchronized time.
In both cases, the reliability of TEMPO decreases. Since
our measurements showed that most clocks do not diverge
more than 20 milliseconds from each other, we set vy equal
to 20 milliseconds.

The fault-tolerant averaging function may reject a clock
measurement for any of three reasons. First, there may be
a hardware malfunction. Second, the two sources of error
of Theorem 3 may combine to generate an above-average
error. (As we have seen, this should only occur to a small
fraction of the clocks being synchronized.) Finally, in an
improperly set-up machine, a series of high-priority in-
terrupts may prevent the operating system from servicing
lower-priority timer clock interrupts, causing that ma-
chine’s clock to slow down. Given that TEMPO was de-
signed for an environment where Byzantine faults are
highly improbable, the synchronization algorithm can tol-
erate (N — 1) /2 faults. However, it should be noted that
the clock of the master, which is not considered more im-
portant than any other clock by the fault-tolerant averag-
ing function, may cause the clock difference measurement
algorithm to fail if it is ‘‘double-faced.”

VI. COMPARISON WITH RELATED WORK

Although TEMPO is a distributed program, it uses a
centralized approach in directing the synchronization ac-
tivities. Fault-tolerance is achieved by not giving a priv-
ileged role to the master’s clock in the synchronization
algorithm and by providing an election algorithm that
elects a new master should the old one terminate. Our
approach therefore contrasts with other existing algo-
rithms that adopt a fully distributed approach to fault-tol-
erance.

It is difficult to compare the various clock synchroni-
zation algorithms because, as observed by Lamport and
Melliar-Smith [8], different algorithms require different
methods of reading clocks and each method generates a
different error. In addition, the various authors describe
the bounds on their algorithms using parameters not al-
ways easily convertible to those of our system of vari-
ables. However, in general, the errors in clock synchro-
nization, as in Theorem 3, depend on the uncertainty in
the elapsed time between the generation and the receipt
of a message and on the time between synchronization
rounds.

In the remainder of this section, in order to compare the
bounds on the accuracy of different algorithms, we make
the following three additional assumptions: 1) there are N
= 3F + 1 machines, where F is the number of machines

with faulty clocks; 2) the message delivery time is in the
range [7 — n, 7 + n], where 7 is the median delay time
and 7 is the uncertainty; and 3) the transmission times
between any two machines are equally distributed.

Lundelius and Lynch [10] describe an algorithm that
executes in a series of rounds; each round is started when
a clock reaches a certain predefined value. When this hap-
pens, a machine broadcasts that value to all other ma-
chines. Meanwhile, it collects within a particular bounded
amount of time measured on its own clock, messages from
other machines. Then, each machine computes the cor-
rection for its clock using a fault-tolerant averaging func-
tion. The bound analysis shows that clocks can be syn-
chronized as closely as 4y + 4T, but the authors suggest
that, with a slight modification of their algorithm, they
can reduce the second term to 2pT.

The algorithm designed by Halpern et al. [6] is also
based on the periodic broadcasting of clock values. In their
method however, a machine that receives a message with
a value that its clock has not reached yet, updates the clock
to that value and broadcast the corresponding message.
This algorithm generates an error of 7 + 5 + 2pT.

The three algorithms introduced by Lamport and Mel-
liar-Smith [7], CON, COM, and CSM, are based on
broadcast as well and achieve the following accuracy, re-
spectively 2Ny + NpT, 2(N + 1)n + poT, and (N +
17)/3n + pT. Although Lamport and Melliar-Smith do
not give the synchronization error in a form comparable
to ours—they analyze how closely in real time clocks
reach the same value whereas we measure how close
clocks are at the same real time—the two quantities appear
to be similar.

Cristian, Aghili, and Strong [2] propose an algorithm
in which nonfaulty clocks periodically generate synch
waves that are propagated to all nodes of a point-to-point
network of diameter D. (The network diameter is defined
as the maximum distance between any two nodes. Notice
that in an Ethernet local area network D = 1.) Indepen-
dently generated synch waves eventually merge into a
winning wave that distributes the time of the fastest clock
to all the nodes. If we identify their maximum link delay
with 7 + 7, clocks can be as close as D(7 + 9)(1 + p)
upon synchronization, but can drift apart as much as D(r
+ (L +) + [0(2 + p)/(0 + 2] [T(1 + p)
+ (7 + n)] during the interval T between two synch
waves.

The algorithm presented by Srikanth and Toueg [12] is
based on the assumption that a known upper bound exists
on the time required for a message to be prepared by a
process, sent to all processes, and processed by them. As
in some other algorithms discussed above, the synchro-
nization takes place in rounds, which in this case start at
multiples of a specified interval. Each process broadcasts
a resynchronization message, and after receiving F + 1
resynchronization messages (so that at least one of them
is from a nonfaulty process) accepts the resynchronization

Authorized licensed use limited to: UNIVERSIDAD DE SALAMANCA. Downloaded on April 11,2024 at 14:46:24 UTC from IEEE Xplore. Restrictions apply.

852 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 7. JULY 1989

and resets its time to the correct multiple of the interval,
plus a constant conveniently chosen to avoid setting the
time backwards. The clever way in which clocks reset
their local times makes the accuracy achieved optimal,
i.e., as close to the real time as that of a single clock.
Identifying with 7 + 7 the maximum link delay, the time
required for a message to reach all processes is D(7 +
1), where D is the diameter of the network. The paper
shows that at any time any two clocks will differ by no
more than D(7 + 7)[(1 + p)* + p(2 + p)/(1 + p)].

While it is true that most communication protocols are
designed to provide an upper bound on the communica-
tion time, perhaps by abnormally terminating the trans-
mission after a number of retries, it is also true that the
resulting variance in the transmission times can be much
larger than the average transmission time. A unique fea-
ture of our algorithm is that it can bound the round-trip
time, despite the high variance in transmission times, by
rejecting those measurements that do not satisfy the re-
quirements of Theorem 1. In fact, under the assumptions
introduced above, if we call 7, the minimum transmission
time, we have

T—nsz’TH}_n:TM—Tm;
and
T == =M —m
20 7 2

By comparing the expression for n with (2), we can
rewrite the result of Theorem 3 as

4n + 2pT.

Although the formula for the accuracy of our algorithm
is the same as the one for the algorithm of Lundelius and
Lynch, our 7 is much lower than theirs. Using for the
parameters the values we have introduced in the previous
section, we obtain 7 = 10 milliseconds and n = 5 milli-
seconds. In the case of other algorithms, » is proportional
to the standard deviation of the transmission times, which
for the Ethernet can be rather large when messages col-
lide. When clocks are synchronized—or almost synchro-
nized—the simultaneous broadcasting of messages that
occurs in the algorithms may cause numerous collisions,
increasing both the median transmission time 7 and the
uncertainty 5. Therefore in an Ethernet environment, we
would expect that our algorithm achieve significantly bet-
ter synchronization accuracy. In a non-Ethernet environ-
ment, for instance a ring or point-to-point network, we
would still expect that » of the other algorithms would be
larger than our 5, though the difference between the two
may be smaller.

Algorithms COM and CSM were developed in the
framework of Byzantine clock synchronization and both
require about N“*' messages. The algorithms of Lunde-
lius and Lynch, Halpern et al., Cristian, Aghili, and
Strong, that of Srikanth and Toueg, and algorithm CON
require in the worst case about N* messages. TEMPO, in

Authorized licensed use limited to: UNIVERSIDAD DE SALAMANCA. Downloaded on April 11,2024 at 14:46:24 UTC from IEEE Xplore. Restrictions apply.

contrast with the other algorithms, employs for each syn-
chronization round only a linear number of messages.
However, unlike TEMPO, which needs an election mech-
anism to ensure that a new master be elected in case the
current one crashes or the network partitions, those al-
gorithms are inherently fault-tolerant. Our choice was
motivated by the fact that in our computing environment
the kind of faults that require the intervention of the elec-
tion procedure are rare. We have followed a design prin-
ciple [9] that calls for simplicity in the most common sit-
uations and confines complexity and high costs with
unusual conditions.

VII. CONCLUSIONS

We have discussed the upper and lower bounds on the
accuracy achieved by the clock synchronization algo-
rithms of TEMPO, which is distributed with Berkeley
UNIX 4.3BSD. TEMPO keeps the clocks of VAX com-
puters in a local area network synchronized with an ac-
curacy comparable to the resolution of single machine
clocks. Comparison with other clock synchronization al-
gorithms shows that TEMPO, in an environment with no
Byzantine faults, may achieve better synchronization at a
lower cost.

ACKNOWLEDGMENT

The authors would like to thank D. Ferrari and M. Ka-
rels for their valuable advice during the development and
implementation of these algorithms. V. Rangan and the
referees provided helpful comments on how to improve
the paper.

REFERENCES

[1] ‘*Adjtime System Call,”” UNIX Programmer’s Manual (Section 2),
4th Berkeley UNIX Distribution Release 3, Feb. 1985.

[2] F. Cristian, H. Aghili, and R. Strong, ‘‘Clock synchronization in the
presence of omission and performance faults, and processors joins,™’
in Proc. 16th Annu. Symp. Fauli-Tolerant Computing Systems, Vi-
enna, July 1986, pp. 218-223.

{3] R. Gusella and S. Zatti, **TEMPO-—A network time controller for a

distributed Berkeley UNIX system,”” IEEE Distributed Processing

Tech. Comm. Newslett., vol. 6, no. SI-2. pp. 7-15. June 1984.

R. Gusella and S. Zatti, **The Berkeley UNIX 4.3BSD time synchro-

nization protocol specification,’” Univ. California, Berkeley, Rep.

UCB/CSD 85/250, June 1985.

[5] R. Gusella and S. Zatti, **An election algorithm for a distributed clock
synchronization program,’’ in Proc. IEEE 6th Int. Conf. Distributed
Computing Systems, Boston, MA, May 1986, pp. 364-371.

[6] J. Halpern et al., *‘Fault-tolerant clock synchronization.’” in Proc.
3rd ACM Annu. Symp. Principles of Distributed Computing, Vancou-
ver, Aug. 1984, pp. 89-102.

[7]1 L. Lamport and P. M. Melliar-Smith, *‘Byzantine clock synchroni-
zation,”’ in Proc. 3rd ACM Annu. Symp. Principles of Distributed
Computing, Vancouver, Aug. 1984, pp. 68-74.

[8] —. **Synchronizing clocks in the presence of faults,”” J. ACM, vol.
32, pp. 52-78, Jan. 1985.

[9] B. Lampson, ‘‘Hints for computer system design,”" in Proc. 9th SOSP,
Operating System Review, ACM, vol. 17, Oct. 1983, pp. 33-48.

[10] J. Lundelius and N. Lynch, **A new fault-tolerant algorithm for clock
synchronization,'” in Proc. 3rd ACM Annu. Symp. Principles of Dis-
tributed Computing, Vancouver, Aug. 1984, pp. 75-88.

[11] J. Postel, Ed., **Internet control message protocol—DARPA Internet
program protocol specification.”” USC/Inform. Sci. lust., Rep. RFC
792, Sept. 1981.

[12] T. K. Srikanth and S. Toueg, '‘Optimal clock synchronization,"’
J. ACM, vol. 34, no. 3, pp. 626-645, July 1987.

[4

=

GUSELLA AND ZATTI: ACCURACY OF CLOCK SYNCHRONIZATION ACHIEVED BY TEMPO 853

Riccardo Gusella (S'79) received the Laurea de-
gree (cum laude) in electrical engineering from the
University of Padua, Italy, and the M.S. degree
in computer science from the University of Cali-
fornia. Berkeley.

He is currently completing the Ph.D. degree in
computer science at the University of California,
Berkeley. where he is a researcher in the Com-
puter Systems Research Group. He has worked for
the Italian Telephone Company (SIP) and for the
Centro Studi e Laboratori Telecomunicazioni
(CSELT) in Turin, Italy. During 1987 he was with the Computing Science
Research Center of Bell Laboratories, Muray Hill, NJ. His research inter-
ests include distributed operating systems, the impact of communication
technology on protocols and networking software, and performance anal-
ysis of communication systems. His thesis work is on modeling the arrival
stream of packets generated by workstations on local area networks.

Dr. Gusella is a member of the Association for Computing Machinery.
He has been a recipient of a Fulbright scholarship.

Stefano Zatti (S'83-M'85) received the Laurea
degree (cum laude) in mathematics from the Uni-
versity of Pavia, ltaly, in 1980, and the M.S. de-
gree in computer science from the University of
California, Berkeley, in 1985.

In 1982-1983 he worked for Olivetti in Ivrca.
Italy, modeling the performance of Olivetti dis-
tributed operating systems. From 1983 to 1985 he
was a member of the Computer Systems Research
Group in Berkeley. CA, working on distributed
clock synchronization and load balancing. and
contributing to the release 4.3 of Berkeley UNIX. Since 1985 he has worked
in the area of communications for IBM Research at the Zurich Laboratory,
with particular emphasis on naming and directory services. His rescarch
interests include operating systems, distributed systems, computer network
security, and computer performance analysis and modeling.

Dr. Zatti is a member of the Association for Computing Machinery and
AICA.

Authorized licensed use limited to: UNIVERSIDAD DE SALAMANCA. Downloaded on April 11,2024 at 14:46:24 UTC from IEEE Xplore. Restrictions apply.

854 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 7. JULY 1989

Multisystem Coupling by a Combination of Data
Sharing and Data Partitioning

JOEL L. WOLF, DANIEL M. DIAS, MeMBER, IEEE, BALAKRISHNA R. IYER,
AND PHILIP S. YU, SENIOR MEMBER, IEEE

Abstract—In a multisystem partitioned database system, the data-
bases are partitioned among the multiple systems and a facility is pro-
vided to support the shipping of database requests among the systems.
In contrast, in the data sharing multisystem approach, all systems have
direct access to the shared database. There are a number of tradeoffs
between these two approaches. In this paper we propose and evaluate
a hybrid architecture that combines the approaches, and offers the ad-
vantages of each. Some databases are shared between systems, while
others are retained private by specific systems. The issue is to deter-
mine which databases to share, which to retain private, and how to
route transactions and partition the private databases among systems
so as to minimize response time or overheads, while balancing the load
among systems. A simulated annealing heuristic is used to solve this
optimization problem. Trace data from large mainframe systems run-
ning IBM’s IMS database management system are used to illustrate
the methodology and to demonstrate the advantages of the hybrid ap-
proach.

Index Terms—Data sharing, function shipping, multiprocessor sys-
tems, simulated annealing, transaction processing.

I. INTRODUCTION

HE large growth rate of the demand for computing

capacity has made the coupling of multiple systems
important. One method of locally coupling multiple sys-
tems for transaction processing is to partition the data-
bases among the multiple systems and provide a facility
to support the shipping of function requests among sys-
tems [1], [6]. Another approach to local multisystem cou-
pling is the data sharing approach in which a number of
systems, each running an independent operating system,
share a common database at the disk level [10], [15].
There are a number of tradeoffs between the two ap-
proaches. In this paper we examine a hybrid approach,
combining the data partitioning and data sharing ap-
proaches, and we attempt to provide the best features of
each.

In the hybrid approach some databases are shared be-
tween the systems, while others are retained private by
one of the systems. Hence it is necessary to determine
which databases to share and which to retain private. This
decision is based on the overheads involved in the two
approaches and on the access patterns to the databases. In
addition, transactions must be routed among the systems,

Manuscript received June 30, 1987.

The authors are with IBM Thomas }. Watson Research Center, P.O.
Box 704, Yorktown Heights, NY 10598.

IEEE Log Number 8928288.

$0 as to minimize remote calls to private databases which
are not locally owned, while balancing the load among
the systems. This optimization problem is solved by a
heuristic based on simulated annealing [7], [8]. Traces
from large mainframe systems running IBM’s IMS data-
base management system are used to examine the efficacy
of the hybrid approach.

Section II outlines the data partitioning, data sharing
and the hybrid approaches to multisystem coupling. The
approaches are compared qualitatively. The optimization
problem is formulated in Section III, and the simulated
annealing approach to solving it is outlined. A quantita-
tive comparison of the approaches is presented in Section
IV. It is demonstrated that the hybrid approach has sig-
nificant advantages for realistic workloads and system pa-
rameters. Finally, concluding remarks appear in Section
V.

II. HYBRID ARCHITECTURE AND QUALITATIVE
COMPARISON

In this section we outline the tradeoffs between the data
partitioning and data sharing approaches that motivate the
hybrid architecture. The approaches are then compared
qualitatively.

In the data partitioning approach, illustrated in Fig. 1,
the databases are partitioned among multiple systems and
can only be accessed directly by the owning system.
Function request shipping is the capability for transac-
tions executing in one database system to send database
requests to other database systems (cohorts) for service.
With such a facility, as in IBM’s Customer Information
Control System [5], [6], a transaction executing on any
system can issue function requests referring to any data-
base without detailed knowledge of how the databases are
partitioned among systems. However, due to communi-
cation costs, performance degrades as the fraction of re-
mote function requests increases. To optimize perfor-
mance, transactions must be routed to systems so as to
minimize remote function requests, while balancing the
workload among systems. A two-phase commit protocol
[4] is typically introduced to coordinate the updates across
multiple systems. At termination, a transaction will cause
two sets of exchanges to take place between the transac-
tion and all of its cohorts. A failure to complete this pro-
cessing in any cohort will cause all updates to be backed
out.

0098-5589/89/0700-0854$01.00 © 1989 IEEE

Authorized licensed use limited to: UNIVERSIDAD DE SALAMANCA. Downloaded on April 11,2024 at 14:46:24 UTC from IEEE Xplore. Restrictions apply.

