48 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 1, JANUARY 1982

Elections in a Distributed Computing System

HECTOR GARCIA-MOLINA, MEMBER, IEEE

Abstract—After a failure occurs in a distributed computing system,
it is often necessary to reorganize the active nodes so that they can
continue to perform a useful task. The first step in such a reorgani-
zation or reconfiguration is to elect a coordinator node to manage the
operation. This paper discusses such elections and reorganizations.
Two types of reasonable failure environments are studied. For each
environment assertions which define the meaning of an election are
presented. An election algorithm which satisfies the assertions is
presented for each environment.

Index Terms—Crash recovery, distributed computing systems,
elections, failures, mutual exclusion, reorganization.

I. INTRODUCTION

DISTRIBUTED system is a collection of autonomous

computing nodes which can communicate with each

other and which cooperate on a common goal or task [4]. For

example, the goal may be to provide the user with a database

management system, and in this case the distributed system
is called a distributed database [16].

When a node fails or when the communication subsystem
which allows nodes to communicate fails, it is usually necessary
for the nodes to adapt to the new conditions so that they may
continue working on their joint goal. For example, consider
a collection of nodes which are processing sensory data and
trying to locate a moving object [18]. Each node has some
sensors which provide it with a local view of the world. The
nodes exchange data and together decide where the object is
located. If one of the nodes ceases to operate, the remaining
nodes should recognize this and modify their strategy for lo-
cating the object. A node which neighbors the failed node could
try to collect sensory data for the area which was assigned to
the failed node. Another alternative would be for the remaining
nodes to use a detection algorithm which is not very sensitive
to “holes” in the area being studied. Or the nodes could decide
to switch to such an algorithm when the failure occurs. If
enough nodes fail, the remaining nodes may decide that they
just cannot perform the assigned task, and may select a new
or better suited job for themselves.

There are at least two basic strategies by which a distributed
system can adapt to failures. One strategy is to have software
which can operate continuously and correctly as failures occur
and are repaired [9]. (In the previous example, this would
correspond to using an algorithm which can detect the object
even when there are holes in the data.) The second alternative
is to temporarily halt normal operation and to take some time

Manuscript received January 7, 1981; revised July 17, 1981. This work was
gléqgglggd in part by the National Science Foundation under Grant ECS-

The author is with the Department of Electrical Engineering and Computer
Science, Princeton University, Princeton, NJ 08544,

out to reorganize the system. During the reorganization period,
the status of the system components can be evaluated, any
pending work can either be finished or discarded, and new
algorithms (and possibly a new task) that are tailored to the
current situation can be selected. The reorganization of the
system is managed by a single node called the coordinator.
(Having more than one node attempting to reorganize will lead
to serious confusion.) So as a first step in any reorganization,
the operating or active nodes must elect a coordinator. It is
precisely these elections we wish to study in this paper.

In this paper we will not study the first strategy of contin-
uous operation. This does not mean that we think that the
second strategy of reorganization is superior. Which strategy
is best depends on the requirements of the application and on
the failure rate. If failures are very common, it will probably
not pay off to reorganize. If it is not possible to stop performing
the task for even a few seconds (or milliseconds?), then clearly
continuous operation is a necessity. On the other hand, algo-
rithms for continuous system operation will in all likelihood
be more complex than algorithms that can halt when a failure
is encountered. Thus, operation between failures should be
more efficient if reorganizations are allowed.

In this paper we discuss election protocols in the context of
failures, but notice that election protocols can also be used to
start up a system initially, or to add or remove nodes from the
system [11]. Thus, when the nodes in the system are initially
turned on, they will automatically elect a coordinator and start
operating, just as if they were recovering from a failure.

The intuitive idea of an election is very natural. We have a
number of nodes which talk to each other. After some delib-
eration among the nodes, a single node is elected the coordi-
nator. When the election terminates, there is only one node that
calls itself the coordinator, and all other nodes know the
identity of the coordinator. After the election, the coordinator
can start the reorganization of the system, after which normal
operation can resume.

However, when one attempts to translate the natural idea
of an election to a concrete algorithm for performing the
election, several interesting issues arise. For example, notice
that after a node is elected coordinator, some or all of its con-
stituents may fail. So what does it mean to be coordinator if
you really cannot tell who you are coordinating? How can the
election protocol cope with failures during the election itself?
When certain types of failures occur, it may be impossible to
guarantee that a single node calls itself a coordinator. How can
these cases be handled? Furthermore, in some situations (like
after the communication subsystem is partitioned) we may
wish to have more than one coordinator.

0018-9340/82/0100-0048800.75 © 1982 IEEE

GARCIA-MOLINA: DISTRIBUTED COMPUTING SYSTEM

This paper will try to answer some of these questions. In
Section II we study the types of failures that can affect an
election. In Sections I1I and IV we consider two failure envi-
ronments and design election protocols for these environments.
In Section I11 we assume that the communication subsystem
never fails and that nodes do not temporarily suspend their
processing without a full failure. In Section IV these as-
sumptions are relaxed. For the two environments considered,
assertions are presented to define what being a coordinator
means. The assertions can then be used to show that the elec-
tion protocols work properly.

The election of a coordinator is basically a synchronization
of parallel processes problem, and thus there is a considerable
amount of related work [2], [7], [17], etc. When there are no
communication failures, electing a coordinator is similar to
the mutual exclusion of processes. That is, we can think of
being coordinator as having entered a special critical region.
In the election, the nodes (i.e., processes) compete with each
other so that only one node enters the critical region and be-
comes coordinator. However, even if there are no communi-
cation failures there are important differences between an
election protocol and a mutual exclusion protocol, and these
differences will be listed in Section I11. When communication
failures occur, the concept of an election diverges from the
mutual exclusion concept, for in a partitioned system we may
not wish to prevent several nodes from becoming coordina-
tors.

Several researchers have dealt specifically with election
protocols [S], [11], [12], [19]. In these cases the election
protocol is embedded in other application algorithms, so that
only a very small portion of the papers is devoted to the election
itself. We believe that election protocols are important enough
to merit an extensive discussion. Furthermore, in this paper
we concentrate on the types of failures that can be handled by
the protocols and in studying the assertions that must hold
throughout the elections.

II. THE ASSUMPTIONS

The types of failures that can occur in a distributed system
play a crucial role in election protocols. Thus, a first step in
understanding election protocols is to understand the types of
failures that can occur in the system.

Trying to protect against all possible types of failures is
impractical, so we start by stating that we will not consider
certain types of failures which are either very rare or very hard
to protect against. Specifically, we make these three assump-
tions.

Assumption 1: All nodes cooperate and use the same elec-
tion algorithm.

Assumption 2: The election algorithm at each node must
make use of certain software facilities. These facilities include
a local operating system and a message handler. We assume
that there are no “software bugs” in these facilities and that
they indeed offer the proper services.

Assumption 3: If a node i receives a message M from node
J, then that message M was sent by node j to node i at some
earlier time. That is, we assume that the communication
subsystem will not spontaneously generate messages.

There are other types of failures whose probability of oc-

49

currence can be lowered to acceptable levels with some ele-
mentary error correction and avoidance techniques. To sim-
plify our discussion, we will assume that these techniques are
in use and that we will never encounter these failures. This frees
our minds to concentrate on the rest of the failure types. Spe-
cifically, we assume the following.

Assumption 4: All nodes have some (possibly limited) “safe”
storage cells. Data stored in these safe cells survive any failure
of the node. A failure during an update to a safe cell cannot
ruin its contents. Either the update is performed correctly
leaving the cell with its new value, or the update is never per-
formed. The “state vector” which is used by the election pro-
tocol and described later is kept in safe storage. (Safe cells can
be implemented by double writing to the appropiate hardware.
See [10].)

Assumption 5: When a node fails (i.e., when its processor
or its nonsafe memory fails), then node immediately halts all
processing [10]. Some time later, the processor at the node is
reset to some fixed state and execution resumes from that fixed
state. (None of the previously executing processes is started
on recovery. Data in nonsafe storage may be lost during such
a failure.) We assume that a failure cannot cause a node to
deviate from its algorithms and behave in an unpredictable
fashion. Any hardware failure that does not stop a node en-
tirely must be detected and must be converted into a “full
fledged” crash before the node is able to affect any other sys-
tem component. (This can be achieved by adding redundancy
to the hardware and to the data structures used.)

Assumption 6: There are no transmission errors. That is,
if a message M is sent and received, then the received message
is precisely M. Notice that we make no assumptions as to
whether M is received at all. This assumption only states that
if M is received, then it is received correctly. (Transmission
errors can be detected and corrected by adding redundancy
to M [1].) .

Assumption 7: All messages from node i to node j which do
arrive at j are processed at j in the same order in which they
were sent. (This can be enforced by adding sequence numbers
to messages.) Again, this assumption does not imply that if
node i sends messages M1, M2, M3 in that order, then node
Jj has to process M1, M2, M3. For example, node j can simply
process M1, M3 and declare M2 as not received.

Finally, we will make two additional assumptions. These two
assumptions will make an election in a distributed system
similar to our intuitive notions of an election. These assump-
tions also simplify the design of the election protocol. (These
two assumptions will be relaxed in Section IV where we discuss
elections in environments where these assumptions do not
hold.)

Assumption 8: The communication subsystem does not fail.
Specifically, we assume that the communication subsystem
has a fixed time limit 7 in which it guarantees that a message
will be delivered if the destination node is active. That is, if
node i wishes to send a message M to node j, node i hands M
to the communication subsystem. If after T seconds node i does
not receive an acknowledgment from the communication
subsystem stating that M was received by j, then node i knows
for certain that node j has failed.

50 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 1, JANUARY 1982

Assumption 9: A node never pauses and always responds
to incoming messages with no delay. (This assumption is
closely related to Assumption 8.) In other words, not re-
sponding “fast” to incoming messages is also considered a
failure. Hence, if node j delays the receipt of message M and
there is any possibility that a node somewhere may have waited
T seconds without hearing about M’s receipt, then node j
should automatically “fail.” That is, all executing processes
should be halted, the state of the node reset, and the recovery
procedure should be initiated.

Assumptions 8 and 9 are reasonable assumptions for certain
classes of distributed systems, and thus it is interesting to study
elections in such a simplified environment. For example, if the
communication lines are very reliable (like the Ethernet [13])
or if the communication network has high connectivity, it
seems fair to assume that the probability of a communication
failure is negligible. Special hardware (e.g., timers) can be
added to the nodes so that they can effectively discover any
delays and convert them into failures.

Elections in an environment where Assumptions 1-9 hold
will be studied in Section III. Since there are systems where
it is not possible to make Assumptions 8 and 9, elections in the
more general case where only Assumptions 1-7 hold will be
discussed in Section 1V.

To close this section we will introduce some notation to de-
scribe the components of the state vector of a node. The state
vector of node i, S(i), is a collection of safe storage cells which
contain data which is crucial for the election and application
algorithms. The principal components of the state vector S (i)
are as follows.

S (i) - s—The Status of Node i: The status can be one of
“Down,” “Election,” “Reorganization,” or “Normal.” When
node i has stopped because of a failure, we consider S(i) - s =
“Down” regardless of what actually is stored in that cell. As
soon as node i recovers from the failure, node i is reset to a
fixed state where S(i) - s equals “Down.” Thus, S(i) - s will
be equal to “Down” from the instant node i fails to the instant
when the election begins. When node i is participating in an
election, S'(i) - s is set to “Election.” If S(i) - s = “Reorgani-
zation,” then node i is participating in a reorganization. A
reorganization follows the election of the coordinator. Nodes
in the “Reorganization” state know the identity of the coor-
dinator, but do not yet know what task they will be performing.
When S(i) - s = “Normal,” node i is in normal operation
working on the application task.

S (i) - c—The Coordinator According to Node i: If S(i) - ¢
= |, then node i considers itself a coordinator.

S(i) - d—The Definition of the Task Being Performed: This
usually includes the application algorithms being used, a list
of the participating nodes, and other state information.

111. ELECTIONS WITH NO COMMUNICATION FAILURES
AND NO NODE PAUSES

In this section we study elections in an environment where
no communication failures occur and where nodes never pause.
Specifically, we assume that Assumptions 1-9 hold. These
assumptions eliminate the possibility that a node may halt for
an arbitrary amount of time and then resume processing where
it left off as if nothing had occurred. This is turn simplifies the
election protocol. We will show that in this environment it is

possible to have election algorithms which guarantee that
exactly one coordinator will be elected.

As an initial step, we wish to specify the rules that an election
protocol must follow in order that it be considered a “good”
protocol. To see what one rule should be, suppose that we have
two nodes i and j, and that at some instant in time S(i) - s =
“Reorganization” = S(j) - s and S(i) - ¢ is not equal to S(j)
- ¢. Clearly, this situation is undesirable because we have two
nodes that have not agreed upon the coordinator. But the sit-
uation where S(i) - s = “Down” or S(j) - s = “Down” and
where S(i) - ¢ is not equal to S(j) - ¢ is acceptable because one
of the nodes is not doing anything. So in general we have the
following assertion.

Assertion I: At any instant in time, for any two nodes i and
Jj in the distributed system, the following must hold.

a) If (S(i) - s = “Reorganization” or S(i) - s = “Nor-
mal”) and if (S(j) - s = “Reorganization” or S(j) s =
“Normal’), then S(i) - ¢ = S(j) - c.

b) If S(i) s =*“Normal” and S(j) - s = “Normal,” then
S@)-d=8(@)-d.

The fact that S(i) - d must equal S(j) - d under normal op-
eration does not mean that all nodes are assigned exactly the
same set of functions. Notice that S(i) - d could be of the form
“If you are node i then - - - , if you are node j then - - -, etc.” (In
Assertion 1, like in the rest of the paper, we use the concept of
time in an intuitive fashion. The notion of time can be for-
malized with the concept of logical time introduced by Lam-
port [8]. For example, Assertion 1 could be reworded as the
requirement that the following event not occur in the system.
Node i at logical time T; sends a message to node j with T3,
S()-s,S(@#) - cand S(i) - d. Node j receives the message when
its logical clock reads T, and notices that T; < T; and either
condition a) or b) of Assertion 1 is violated.)

(This assertion is similar to the one given by [12]. However,
here we require that the assertion hold at all times, not just at
the end of the election. This stronger assumption avoids the
problems of having some nodes believe that they are coordi-
nators before the entire protocol has finished everywhere.)

Assertion 1 defines the consistent state vectors and should
be satisfied by an election protocol. This simple assertion also
tells us what it means to be a coordinator. Once node i knows
that it is a coordinator (i.e., when S(i) - s = “Reorganization”
or “Normal” and S(i) - ¢ = i), it knows that any other active
node (i.e., nodes with “Reorganization” or “Normal” status)
will recognize it as the coordinator. Furthermore, as long as
node i does not fail and keeps its status of “Reorganization”
or “Normal,” no other node can become coordinator. But this
is all that a coordinator knows. At any time, the rest of the
nodes in the system may fail, so that at no time can a coordi-
nator know for sure which nodes are active and considering it
the coordinator. This means that if the coordinator has some
actions that it wishes a certain set of active nodes to perform,
it cannot simply issue the necessary commands, as would ap-
pear possible from the intuitive idea of a coordinator. Instead,
the coordinator must use a two phase commit protocol [6] to
guarantee that the actions are performed by all nodes in the
set (or not performed by any node).

In addition to Assertion 1, there is a second condition which
should be satisfied by the election protocol. Suppose that at
a given time we observe that there is no coordinator in the

GARCIA-MOLINA: DISTRIBUTED COMPUTING SYSTEM

system. We would hope that after a finite time a new coordi-
nator would be elected. Unfortunately, this is not possible, for
a string of failures could keep any election protocol from ever
electing a coordinator. So instead we require that if no failures
interfere with the election, then a coordjnator will eventually
be elected.

Assertion 2: If no failures occur during the election, the
election protocol will eventually transform a system in any state
to a state where:

a) there is a node i with S(i) - s = “Normal” and S (/)
-¢=1,and i

b) all other nodes j which are not failed have S(j) - s =
“Normal” and S(j) - ¢ = i.

Assertions 1 and 2 define the desired characteristics of an
election protocol under Assumptions 1-9. The next step is to
exhibit a protocol with these properties. There are actually
many such protocols. As was mentioned in the Introduction,

the election of a coordinator is very similar to the mutual ex-

clusion of parallel processes. That is, in an election the various
nodes (i.e., processes) attempt to enter a special critical region.
Once a node enters the region, all other nodes are excluded and
the successful node becomes the coordinator. Since both the
election and mutual exclusion problems are similar, many of
the techniques and ideas used for mutual exclusion [2], [3],
[71, [15], [17], etc., can also be applied to the design of election
protocols. Nevertheless, the mutual exclusion protocols should
not be used directly for elections because there are some im-
portant differences between the two problems.

1) In an election fairness is not important. An elected
functioning coordinator has no need to let other nodes become
coordinators. In a general mutual exclusion algorithm, all
nodes should eventually be able to enter the critical region.
Since the election protocol does not have to be fair, it can be
simpler.

2) The election protocol must properly deal with the case
of a coordinator failing. On the other hand, most mutual ex-
clusion algorithms assume that the process in the critical region
(i.e., the coordinator) will not fail.

3) A new coordinator must inform all active nodes that it
is the coordinator. (That is, all S (i) - ¢ must be set to identify
the coordinator.) In a mutual exclusion algorithm, the nodes
not in the critical region have no need to know what node is in

the region.
A. The Bully Election Algorithm

The election algorithm we present here is called the Bully
Algorithm because the node with the highest identification
number forces the nodes with smaller identification numbers
into accepting it as coordinator. The idea of using node iden-
tification numbers as priorities has been used in other algo-
rithms [5], [11], [12], [19], but the specifics of our algorithm
and the proof of correctness are different from the other al-
gorithms.

In order to avoid getting lost in the details, we will leave the
precise description of the election algorithm and the proof that
Assertions,1 and 2 are satisfied for Appendix 1. Here we will
only give an informal description of the algorithm. Keep in
mind that the Bully Algorithm (as well as the algorithms in
[11], [12], and [19]) only works when there are no commu-
nication failures and when nodes do not pause (i.e., Assump-
tions 1-9 hold).

51

As mentioned earlier, each node in the system is assigned
at system creation time a unique identification number. This
identification number is used as a priority by the Bully Algo-
rithm, so that the node with the highest priority (i.e., with the
highest identification number) out of the nodes that are par-
ticipating in the election will become coordinator. Let us as-
sume that the identification numbers are between 1 and n, the
number of nodes in the system.

In order to simplify the explanation, temporarily assume
that once a node fails, it remains inactive forever. Thus, a failed
node will never come up and will not interfere with any ongoing
elections. (Later, we will study how nodes can recover from
failures.) Now let us look at a node with identification number
i which wishes to start an election to become coordinator. (For
example, node i may have discovered that the old coordinator
was down and is trying to replace it as coordinator.) ‘

The election protocol for node i is divided into two parts.
First, node i attempts to contact all nodes with higher priority,
that is, all nodes with identification number j such that i <j
< n, where n is the number of nodes in the system. If any of
these nodes respond, then node i gives up its bid to become
coordinator and waits until the node with higher priority be-
comes the new coordinator. (After waiting for some time
without hearing from some coordinator, node i should restart
the election protocol from scratch.) On the other hand, if all
nodes with higher priority do not respond after the time limit
of T seconds, then node i can guarantee that they have all
failed. (See Assumption 8.) By our temporary assumption,
these failed nodes will remain so. Thus, fori <j < n,S(j) s
will be “Down” and Assertion 1 will be satisfied from now on
as far as the higher priority nodes are concerned.

As soon as node i completes the first part of the protocol, it
has assured itself the job of new coordinator. The higher pri-
ority nodes are out of operation, while the lower priority nodes
cannot complete the first part of the algorithm because node
i (a higher priority node for them) is active. Thus, only node
i will enter the second part of the election protocol and become
coordinator. Of course, node i could fail at any point during
the second part of the protocol. In this case node i loses the job
of coordinator, just as any coordinator loses its job when it
fails.

To inform all the lower priority nodes that it is the coordi-
nator, node / in the second part of the election algorithm must
proceed in two steps. (If only one step were used, Assertion 1
could be violated.) Since node i does not know the contents of
the state vectors of the lower priority nodes, it first forces these
nodes into “similated failures.” By sending a “halt” message
to node k, node i makes node k stop any processing and set
S(k) - s to “Election.” Once all nodes are in a known state, the
state vectors can be modified without ever violating Assertion
1. So in the second step (of the second part of the protocol),
node i sends out “I am elected” messages to the lower priority
nodes. When a node. k receives such a message, it sets S(k) -
c to i and then sets S(k) - s to “Reorganization.” (Before node
k processes the “I am elected” message from node i, it checks
that the last “halt” message was also sent by node i.) Now that
the election is over, node i also sets S(i) - c toi and S(i) - s to
“Reorganization.” During reorganization, node / distributes
the new algorithms to the nodes (i.e., S(k) -) and all status
are changed to “Normal.”

52 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 1, JANUARY 1982

In the description of the protocol so far, we have assumed
that failed nodes did not recover. Clearly, nodes should recover
and we need a recovery strategy that does not destructively
interfere with an ongoing election. There are various options
for this, but it turns out that the simplest one is to let a recov-
ering node attempt to become the coordinator using the same
protocol we have described. It all works out nicely, for a re-
covering node, in following the election protocol, will halt all
lower priority nodes which may be in the process of becoming
coordinators. So the algorithm we described for the case where
nodes never recover is actually the complete Bully Algo-
rithm.

Theorem 1: In an environment where Assumptions 1-9
hold, the Bully Algorithm (whose details are given in Appendix
I) satisfies Assertions 1 and 2.

Informal Proof: See Appendix 1. o

1V. ELECTIONS WITH COMMUNICATION FAILURES
AND NODE PAUSES

In the previous section we discussed distributed system
elections under some strong failure assumptions. We assumed
that the communication subsystem never failed (Assumption
8) and that nodes never paused (Assumption 9). In this section
we will study elections in the more general environment where
only Assumptions 1-7 hold. We will find that in this environ-
ment it is necessary to redefine the meaning of an election.

Once Assumptions 8 and 9 are relaxed, there are many types
of failures which can take place. To illustrate some of the
possible failures which we wish the election protocol to handle,
we will give some examples. The nodes in the system may be
partitioned into two or more groups of isolated nodes, where
the nodes within a group can communicate with each other but
are unable to communicate with nodes in other groups. Some
nodes may be able to send out messages but not receive them,
or vice versa. Two nodes i and j may be able to communicate
with a third node, but at the same time nodes i and j may be
unable to communicate with each other. A node may stop its
processing at any time for an arbitrary period of time, and then
resume its processing exactly where it left off as if nothing had
happened, and so on.

With such failures it is impossible to elect a coordinator in
the sense of Assertions 1 and 2. That is, a node can never
guarantee that it is the only node which considers itself a co-
ordinator. For example, after a system partition, the coordi-
nator of one group of nodes cannot (and may not wish to) force
other groups of nodes into not having other coordinators. We
thus have the following result.

Theorem 2: In a distributed system which does not satisfy
Assumptions 8 and 9, there is no election protocol which
satisfies Assertions 1 and 2.

Informal Proof: If either one of the assumptions does not
hold, we may have a node i in the system with S(i) - s =
“Normal” and S(i) -c = i which does not respond to the mes-
sages from the other nodes (because of a communication
failure or because node i has simply paused for a while). From
the point of view of the rest of the nodes, node i may have set
S(i) - s to “Down,” so to satisfy Assertion 2 they must elect a
new coordinator. But if a new coordinator is elected, Assertion
1 will be violated.]

If we wish to have elections in an environment where As-
sumptions 8 and 9 do not hold, we must redefine what is meant
by an election and by a coordinator. A coordinator cannot be
unique throughout the system, so we think of electing a coor-
dinator only among the nodes which can communicate with
each other. Unfortunately, the term “nodes which can com-
municate with each other” is rather ill defined, for such a group
can change as failures occur and are repaired. So how can we
tell who a coordinator is coordinating? There is also the
problem of dealing with nodes which “migrate” from one
group of nodes to another group. That is, suppose that we have
a group of nodes which all think that node i is their “local”
coordinator. At any point in time, a new node might pop into
this group from another group without the new node realizing
that it has switched groups. The new node should not be al-
lowed to operate in the group coordinated by node i without
some type of new election and reorganization.
These problems can be solved in a simple way if we introduce
the notion of group number for a group of nodes. Any group
of nodes that has somehow gotten together to elect a coordi-
nator and works on a common task or goal is identified with
a unique group number. All messages exchanged by the nodes
of a group contain the group number, so that a node can simply
ignore messages that were generated by foreign groups. For
this to work, all group numbers must be unique and nodes
cannot forget their current group number. (As we will see later,
not all messages from foreign groups can be ignored.)
Let us assume that node i keeps its group number in its state
vector S(i). We will call the group number of node i S(i) - g.
Using group numbers, we can state the assertion that must be
satisfied by the election protocols. All nodes in the same group
should have the same coordinator. More specifically, we have
the following assertion.
Assertion 3: At any instant in time, for any two nodes i and
J in the distributed system, the following must hold.
a) If (S(@) - s = “Reorganization” or S(i) - s = “Nor-
mal”) and (S(j) - s = “Reorganization” or S(j) - s =
“Normal”) and S(i)- g =S() g, thenS (i) - c =S (j)
- C.

b) IfS() s =S() s ="“Normal”and S(i)- g = S(j)
-g,then S(i) - d = S(j) - d.

Notice that Assertion 1 can be obtained from the new as-
sertion if we think of all nodes belonging to a single fixed group.
Assertion 3 (like Assertion 1) defines the meaning of being a
coordinator. In an environment where Assumptions 8 and 9
hold, a coordinator can be sure that any node which does not
consider it the coordinator is down. Now that these assump-
tions do not hold, a coordinator knows even less than before.
All a coordinator can tell is that any nodes which consider
themselves part of its group must consider it the coordinator.
But nodes in the group are free to change groups at any time,
leaving the coordinator with little to coordinate.

We also need an assertion similar to Assertion 2 that tells
us that a coordinator should be elected in any group of nodes,
unless failures interfere. Before stating the new assertion, we
must decide whether nodes which only have one way com-
munication or which can only communicate with a subset of
the nodes in the group should be required to be members of the
group. Since it is very hard to carry on an election with nodes

GARCIA-MOLINA: DISTRIBUTED COMPUTING SYSTEM

which can only receive or only send messages, or with nodes
which cannot receive or send mesages to certain nodes, we
choose not to make any requirements for these nodes. These
“partially failed” nodes may or may not end up with the same
group number and coordinator as the other nodes in the group.
Thus, we have the following assertion.
Assertion 4: Suppose that we have a set of operating nodes

R which all have two way communication with all other nodes
in R. That is, for the nodes in R Assumptions 8 and 9 hold.
Also, assume that there is no superset of R with this property.
If no node failures occur during the election, the election al-
gorithm will eventually transform the nodes in set R from any
state to a state where:

a) there is a node i in R with S(i) - s = “Normal” and

S@E)-c=i,

b) and for all other nodes j in R, S(j) - s = “Normal,”

S -c=iand S() - g=S3G) " ¢

As in Section III, we have no fairness requirement for the

election protocols. We do not care which node is elected co-
ordinator, and the coordinator may remain coordinator as long
as it pleases.

A. The Invitation Election Algorithm

We will now present an electron algorithm which satisfies
Assertions 3.and 4 in an environment where only Assumptions
1-7 hold. A description and proof of correctness of the protocol
is given in Appendix II. Here we will give an informal de-
scription of the algorithm. '

In the Bully Algorithm (of Section III-A) the active node
with the highest priority “forced” all other nodes to refrain
from trying to become coordinator, so that the highest priority
node was assured success in the election. In our current failure
environment such an approach simply does not work because
several nodes may believe that they are the highest priority
node. So instead of forcing nodes into a given state, nodes who
wish to become coordinator will “invite” other nodes to join
it in forming a new group. A node receiving an invitation can
accept or decline it. When a node accepts an invitation, it
modifies its state vector to join the new group.

To simplify the algorithm, we can make a receiving node
form a new group with itself the coordinator and only member.
Then the entire election protocol boils down to the protocol for
merging or combining various groups of nodes into a new
group. To illustrate what we mean, consider the following
example. A group of 6 nodes is operating with node 6 as co-
ordinator. Then node 6 crashes, leaving the other five nodes
able to communicate with each other without a coordinator.

As each of the five nodes realizes that the-coordinator is
down, they each form a new group. The coordinator of each
group periodically looks around the system to see if there are
other groups which might want to join it. To prevent all group
coordinators from sending out invitations at once, a priority
mechanism is used so that lower priority nodes defer sending
out their invitations for a longer period of time. This, of course,
does not really prevent all conflicts; it only reduces the prob-
ability of a conflict. So, in the example let us assume that both
nodes 4 and 5, believing that they are each the coordinator with
highest priority, send out invitations to the rest of the coordi-
nators. Say that node 3 accepts the invitation of node 4, while

53

nodes 1 and 2 accept the invitation of node 5. Then two new
groups would form (with new group numbers): one group with
nodes 3 and 4 and node 4 coordinating, and a second group
with node 5 coordinating nodes 1, 2, and 5. Sometime later,
one of the two coordinators invites the other one to join its
group, so the system of five operating nodes ends up being in
a single group with a single coordinator.

Group numbers allow the system to evolve in a simple and
well-defined fashion. They identify the groups as well as all
messages which emanate from the groups. The only property
needed by group numbers is uniqueness. The group numbers
can be generated by each new coordinator as follows. Every
node has a unique identification number, as well as a counter
for the number of new groups generated by the node. (The
counter and node identification are kept in safe storage. See
Assumption 4.) A new group number is generated by incre-
menting the counter by one and appending the node identifi-
cation to the result. (We can think of group numbers as ti-
mestamps [8], [20] for the group generation time.)

The two main ideas in the Invitation Algorithm are that
recovering nodes form new single node groups, and that co-
ordinators periodically try to combine their group with other
groups in order to form larger groups. The details of the al-
gorithm are given in Appendix II.

Theorem 3: In an environment where Assumptions 1-7 are
satisfied, the Invitation Algorithm satisfies Assertions 3 and
4.

Informal Proof: See Appendix II. o

B. Comments on the Invitation Algorithm

There are many variations and improvements on the basic
Invitation Algorithm. For example, a coordinator could decline
invitations if it does not trust the new coordinator or if it is
simply “not interested” in forming a new group. Most of these
variations are straightforward and will not be discussed here.
We believe that this algorithm can also be used in other failure
environments. For example, it might be better to use the In-
vitation Algorithm even when Assumptions 8 and 9 hold in the
system because this algorithm is more general and not much
more complicated than the Bully Algorithm.

In some applications certain operations should not be per-
formed simultaneously by isolated groups of nodes. For ex-
ample, in a distributed database with replicated data, we may
not want isolated groups of nodes to at the same time update
their copy of the replicated data because the data will then
diverge [16]. One common way to enforce this restriction is
to require that if a group is going to perform the restricted
operation, it must have as members a majority of the nodes in
the entire system (where the total numberof nodes is known
and constant). This guarantees that at most one group per-
forms the restricted operation.

Restricting some operations is part of the reorganization
phase which follows the election of the coordinator. That is,
if there are some restricted operations, a newly elected coor-
dinator should count the members of the group and decide if
the operation is allowed. The allowed operations and appli-
cation algorithms are then distributed to the member nodes
to be stored in S'(i) - 4. By the way, notice that by requiring a
majority of nodes it is possible to end up with a system where

54 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 1, JANUARY 1982

no group of nodes is allowed to perform the restricted opera-
tion. Also, notice that the restricted operation (as all other
operations) must be performed with a two phase commit
protocol [6] to ensure that the group still contains a majority
of nodes when the operation is actually performed.

In some applications it is also necessary to keep track of the
history of the groups that were formed. A history for a group
of nodes contains the group number, the identification number
of the coordinator and all member nodes, plus a history of the
previous groups that the nodes participated in. Thus, the his-
tory of a group forms a graph with groups as vertices and going
back to the initial group that created the system. A history
graph for a new group can be compiled by the coordinator and
distributed to the member nodes for safekeeping (in S(i) - d).
The history information can be useful during reorganization
time in order to “clean up” pending or conflicting work of the
previous groups. For example, in a distributed file system
histories can be used to detect conflicting modifications to files
[14].

V. CONCLUSIONS

In this paper we discussed elections in distributed computing
systems. We discovered that the meaning of an election de-
pends on the types of failures that can occur, so we studied
elections in two representative failure environments. For each
environment we postulated assertions which define the concept
of an election and which must be satisfied by election algo-
rithms. An election algorithm for each of the environments was
also presented.

An election algorithm is an important component of a crash
resistant distributed system, but it is just one of the many such
components. The election algorithm interacts with the rest of
the application components in various ways, and it is impossible
to design a complete election algorithm without designing the
rest of the system. In this paper we only studied the basic
concepts and alternatives for election algorithms, and much
more work is required before these ideas can be properly in-
tegrated into a complete system.

APPENDIX |
THE BULLY ELECTION ALGORITHM

This appendix describes the Bully Election Algorithm which
operates in an environment where Assumptions 8 and 9 hold.
Before giving the details of the algorithm, we will briefly de-
scribe the message passing and operating system facilities
available at each node in the distributed system.

The main way in which users of the system interact with the
local operating system is with the CALL statement. The format
of this statement is

CALL proc (I, parameters), ONTIMEOUT (¢): stmt.

Execution of this statement by a process causes procedure
“proc” to be executed at node ““;” with the given parameters.
This possibly remote procedure invocation is managed by the
operating system. If node i is the local node, then the statement

is interpreted as a standard procedure call. If node i is a remote
node, then the operating system suspends the calling process
and sends out a messsage to node i requesting the execution
of the procedure. When the remote node receives the message,
it schedules a process to execute procedure “proc.” (The
scheduled process is executed concurrently with other processes
at the remote node.) When the process completes, an ac-
knowledgement message is sent back ot the originating node
with any results produced. (All parameters are value result.)
The local operating system then causes the calling process to
resume execution after the call statement, just as if the call had
been a local procedure call.

While the calling process is suspended, the local operating
system keeps track of the elapsed time. If “#”” seconds go by
without an acknowledgment from node ““i,” then the calling
process is started up and statement “stmt” is executed. (A
response to the call statement which arrives after the timeout
occurred is ignored.)

There are some procedure calls which are handled differ-
ently. These are calls to immediate procedures. From the point
of view of the calling operating system, an immediate call is
handled the same way. When a remote node i receives a mes-
sage to execute an immediate procedure, the node i operating
system itself executes the requested procedure, instead of
creating a new process to execute it. With an immediate pro-
cedure, the communication subsystem and the node i operating
system guarantee that a response will be received by the calling
node within a maximum of 7 seconds. (No such guarantee is
made with the other procedures.) Thus, if a process P executes
the statement

CALL foo(i, parms), ONTIMEOUT (T): s

where “foo” is an immediate procedure and if statement “s”
is executed, then process P knows for sure that node i is down.
(See Assumptions 8 and 9.) To make it possible for the the
operating system to perform immediate procedures fast, these
procedures should be short and should not include CALL
statements.

Procedures which can be invoked with a CALL statement
are defined with the declaration:

[IMMEDIATE] PROCEDURE proc (i, parameters);
Procedure code;

The first parameter / is the node at which the procedure is
being executed.

The application procedures (i.e., everything other than the
operating system and the election procedures) can also use the
CALL statement. However, the operating system delays exe-
cution of all application procedures until the status of the node
S()-s,is “Normal.”

(Lampson and Sturgis [10] describe how a call statement
similar to the one we have described can be implemented in a
system where Assumptions 4-and S hold. The main idea is that
the operating system must uniquely number all outgoing call

GARCIA-MOLINA: DISTRIBUTED COMPUTING SYSTEM

messages so that the responses can be identified when they
return. The counter for numbering procedure calls must be
kept in a safe cell.)

The operating system also provides a facility to simulate a
node failure. This facility is invoked by the statement

CALL STOP.

When this statement is executed by a procedure P, the oper-
ating system stops the execution of all processes. The process
running procedure P is allowed to finish P and then is also
halted. The scheduler is reset to indicate that no processes exist
at the node. The stop statement does not affect the operating
system. It continues to receive and process messages. After the

execution of a stop statement, new processes can be stated up,

either be remote nodes (through CALL statements) or by
procedures Check and Timeout which are next described.

Periodically, the operating system calls a special procedure
called Check. This procedure checks the status of the dis-
tributed system, and if anything is “wrong” starts up an elec-
tion. The code for this procedure is given later with the rest of
the election algorithm.

Similarly, when the operating system notices that a certain
predefined amount of time goes by without hearing from the
coordinator, procedure Timeout is automatically started up.
This procedure will try to contact the last known coordinator,
and if it cannot, it will take appropriate action.

When a node i fails, variable S(i) - s is set to “Down’” and
all processing stops. We assume that data in the state vector
S(#) is not lost due to the failure. When a node recovers, the
operating system is started up, and a process is started up to
execute procedure Recovery. Procedure Recovery can also be
invoked by the application programs when they discover that
the coordinator is down.

As discussed in the main body of this paper, the state vector
at node i, S (i) contains a status indicator S(i) - s, the identity
of the coordinator S(i) - ¢, and the definition of the task being
performed S(i) - d. We also include the following in the state
vector.,

S(#) - h: This is the identity of the last node which caused
node i to halt. This identity is used to distinguish messages
from the node which is currently trying to become coordinator
from messages of nodes which previously tried.

S(#) - Up: A set of node identification numbers. These are
the nodes which node i believes to be in operation.

Since processes at a node can be executed concurrently, we
must be careful about interference among processes which
manipulate the state vector S(i). We will assume that there
is a mutual exclusion mechanism controlling access to the state
vector of a node. In the election algorithm the code in the
critical regions where the state vector is accessed will be en-
closed in double brackets [[,]]. In other words, when a process
is executing code within these brackets, we assume that any
other processes wishing to enter their critical regions are de-
layed. If a CALL STOP statement is executed while a process
P is in its critical region, then the operating system waits until

S5

P exits the critical region before suspending it. After a node
failure, the mutual exclusion mechanism is reset so that new
processes may enter their critical regions.

We now present the procedures that make up the Bully
Algorithm. The procedures are given in an informal Algol-like
language. Comments are enclosed in double angular brackets

(G0

IMMEDIATE PROCEDURE AreYouThere(i);
BEGIN
({This procedure is used by remote nodes to discover if node
i is operating. Nothing is actually done at node i.))
END AreYouThere;

IMMEDIATE PROCEDURE AreYouNormal(i, answer);
BEGIN
((This procedure is called by coordinators to discover the
state of a node.))
[[1F S(i) - s = “Normal” THEN answer := “Yes”
ELSE answer := “No”;]]
END AreYouNormal;

IMMEDIATE PROCEDURE Halt(i, j);
BEGIN
({When node i receives this message, it means that node j
is trying to become coordinator.))
[[S(i) - s := “Election”; S(i) - & := j;
CALL STOP;]]
END Halt;

IMMEDIATE PROCEDURE NewCoordinator(i, j)
BEGIN
({Node j uses this procedure to inform node i that node j
has become coordinator.))
[[IF S(@#) - h = j AND S(i) - s = “Election” THEN

BEGIN
S(@)-c:=J;S() s := “Reorganization”;
END;]]

END NewCoordinator;

IMMEDIATE PROCEDURE Ready(i, j, x);

BEGIN

((Coordinator j uses this procedure to distribute the new
task description x.))

[[1E S() - ¢ =j AND S(i) - s = “Reorganization” THEN
BEGIN
S@@)-d:=x;S8G) s :=“Normal”;
END;]]

END Ready;

PROCEDURE Election(i);

BEGIN

{ (By executing this procedure, node i attempts to become
coordinator. First step is to check if any higher priority
nodes are up. If any such node is up, quit.))

FORj:=i+1,i+2,---,n—=1,nDO
BEGIN ((n is number of nodes in system.))
CALL AreYouThere(j), ONTIMEOUT(T):

56 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 1, JANUARY 1982

NEXT ITERATION;
RETURN;
END;
{(Next, halt all lower priority nodes, starting with this
node.))
[[CALL STOP;
S() s := “Election”; S() - 2 :=i; SE) - Up:={ }]1
FORj:=i—1,i—2,"*+, 2,1 DO
BEGIN
CALL Halt (j, i), ONTIMEOUT(T) : NEXT ITERATION;
[[S(#) - Up := {j} UNION S(i) - Up;]]
END;
{(Now node i has reached its “election point.” Next step is to
inform nodes of new coordinator.))
[[SE) - c:=1i;8@) s := “Reorganization”;]]
FOR j IN S(i) - Up DO
BEGIN
CALL NewCoordinator(j, i), ONTIMEOUT(T):
BEGIN
cALL Election (i); RETURN;
((Node j failed. The simplest thing is to restart.))
END;
~ END;
{(The reorganization of the system occurs here. When done,
node i has computed S(i) - d, the new task description. (S(i)
- d probably contains a copy of S(i) - Up.) If during the
reorganization a node in S'(i) - Up fails, the reorganization
can be stopped and a new reorganization started.))
FOR j IN S(i) - Up DO
BEGIN
CALL Ready (j, i, S(i) - d), ONTIMEOUT (T):
BEGIN
CALL Election (i); RETURN;
END;
END;
[[S(i) - s := “Normal™;]]
END Election;

PROCEDURE Recovery(i);
BEGIN
({This procedure is automatically called by the operating
system when a node starts up after a failure.))
S(i) - h := UNDEFINED; {{e.g., setit to —1))
cALL Election(i);
END Recovery;

PROCEDURE Check(i);

BEGIN

((This procedure is called periodically by the operating
system.))

IF [[S(§) - s = “Normal” AND S(i) - ¢ = i]] THEN
BEGIN ((I am coordinator. Check if everyone else is
normal.))

FORj:=1,2,---,i—1,i+1,---,nDO
BEGIN
CALL AreYouNormal(j, ans), ONTIMEOUT(T) :
NEXT ITERATION;
IF ans = “No” THEN

BEGIN CALL Election(i); RETURN; END;
END;
END;
END Check;

PROCEDURE Timeout(i);

BEGIN

{{This procedure is called automatically when node i has
not heard from the coordinator in a “long” time.))

IF [[S(#) - s = “Normal” OR S(i) - s “Reorganization’]]
THEN
BEGIN
{{Check if coordinator is up.))
CALL AreYouThere(S(i) - ¢), ONTIMEOUT(T) :

CALL Election(i);

END

ELSE CALL Election(i);

END Timeout;

Theorem Al: The Bully Algorithm under Assumptions 1-9
satisfies Assertion 1.

Informal Proof: (As we mentioned earlier, we use the
concept of time in an intuitive fashion. This proof can be for-
malized with the ideas in [8].) We divide the proof into two
parts. First, we show that part a) of Assertion 1 holds then we
show part b).

a) We must show that any two nodes which are in a
“Reorganization” or “Normal” state must consider the same
node coordinator. Notice that this constraint can only be vio-
lated in the Bully Algorithm when a node i switches its state
to “Reorganization” with a new value for S() - c. (When a
node switches to “Normal” state, the coordinator S(i) - ¢ is not
changed, so this transition is not important here.) We will now
show by contradiction that a node i making the critical tran-
sition will never violate the constraint in part a) of Assertion
1.

Suppose that there is a node i which changes S(i) - s to
“Reorganization” with S(i) - ¢ = j (j 2= i) at some time ¢,.
At that same time there is another node k with S(k) - s equals
to “Reorganization” or “Normal” and with- S(k) - ¢ = m,
where m is different from j (m == k).

“Since node i is making S(i) - ¢ equal to j, node j must have
successfully reached an “election point” in the immediate past.
(The election point of node j is when that node completes the
second FOR loop in procedure Election.) Let us look at the
election of node j which is closest to time 7. Going back in time
from time ¢}, say that at time ¢, node reached its election point,
at time 3 node i was halted (with procedure Halt) by node j
(setting S(i) - h = j), and at time ¢4 node j started the election
protocol (where t4 <13 <t <ty).

Since we are looking at the last election of j before ¢1, node
Jj did not fail and was not halted (by procedure Halt) between
times ¢4 and #,. We also know that between times ¢3 and #; node
i did not fail and did not receive any other Halt messages (else
S(i) - h would have been reset and the ¢, transition could not
have occurred). Also, notice that at some time ¢, between
times ¢4 and 5, node j assured itself that node m was halted.
(If m > j, node j makes sure that node m is down. If m <7,
then node j sends a halt message to node m.)

GARCIA-MOLINA: DISTRIBUTED COMPUTING SYSTEM

In addition to the election of node j, node m was also being
elected. Let #, be the time at which the election point of the last
m election occurred. Notice that ¢, occurred before the current
time #,, else node k would not have S(k) - ¢ = m. Thatis, ¢, <
t;. Now consider the following two cases.

Case I [of Part a)]: m > i. In this case t,, < t3. (See algo-
rithm.) Node m also sends a Halt message to node i, but this
must have occurred before #3 because node i/ did not receive
Halt messages after 3. Since j = i, node m assured itself that
Jj was down also before time 3. That is, some time between z,,,
and ¢3 node j was halted. But this is a contradiction because
the period between ¢,, and ¢ is included in the time between
t4 and ¢, in which we know that node j did not halt.

Case 2 [of Part a)]: m < i. In this case t,,, > 3. This implies
that the election of m took place entirely between the times 3
and ¢,. This in turn means that at some point in this interval
node m made sure that node i had failed. But if node i failed
between ¢3 and ¢, then S(i) - » was changed to a value dif-
ferent from j, and the transition at time ¢; did not take place.
This is a contradiction. (If j = i, #; = ¢, and node m also pre-
vents the ¢, transition from occurring. If m = i, the transition
at time ¢, does not take place either.)

b) The proof of part b) of Assertion 1 is also by con-
tradiction. Suppose that at time #; a node i with S(i) - ¢ = j and
S(i) - d = x switches its state to S(i) - s = “Normal.” Also,
suppose that at the same time a second node k (k different
from i) has S(k) - s = “Normal,” S(k) ‘¢ =m,and S(k) - d
= y. By part a) of this proof, m = j. This means that both x and
y were distributed by the same coordinator j in different
elections. Without loss of generality, say that y was distributed
after the second j election. Before y is sent out by calls to
procedure Ready, node j resets all nodes to either “Down” or
“Election” states, so that any node like node k with the old
value of x must not be in “Normal” state. This is a contra-
diction. (Recall that messages between node j and other nodes
are delivered in the order in which they were sent. See As-
sumption 7.) o

Theorem A2: The Bully Algorithms under Assumptions 1-9
satisfies Assertion 2.

Informal Proof: Take a system with a set of operating
nodes and a set of failed nodes and assume that no further
failures occur. Let node i be the operating node with highest
priority.

If node i is not the coordinator alreadys, it will try to become
one. (If node i considers node j the coordinator, node j must
be of higher priority than i and thus j must be down. When
procedure Timeout is called, node i will realize this and start
an election.) Since node i has the highest priority, its bid to
become coordinator will be successful. Therefore, the system
will eventually reach a state where S(i) - s = “Normal” and
S(i) - ¢ = i. By following the Bully Algorithm we see that all
other nodes j will have S(j) - s = “Normal” and S(j) - ¢ =
i

If node i already was the coordinator to begin with, then
there might be some nodes & in the system with S(k) - s =
“Election” or “Reorganization.” This situation will be detected
by coordinator i when procedure Check is called next. By
calling another election, node i will correct the situation and
take the system to the desired state. |

57

APPENDIX 11
THE INVITATION ELECTION ALGORITHM

This appendix describes the Invitation Election Algorithm,
which operates in an environment where Assumptions 1-7
hold. The operating system and message passing facilities
available to the algorithm are similar to the ones used by the
Bully Algorithm of Appendix I. However, there are a few
differences which we now discuss.

When a remote CALL statement times out after waiting T
seconds, the calling process can now make no inferences about
the state of the nonresponding node. The value of 7 is now
chosen so that if a calling process waits this amount of time
without a response, then it is likely that the called node is down.
For the Invitation Algorithmn we do not use immediate pro-
cedures since they are of little use in this environment.

Nodes should not normally respond to foreign call state-
ments from nodes with a different group number than the local
group number. To enforce this, the group number of the calling
node is appended to each call message and checked by the re-
ceiving node. However, in the election algorithm a node
sometimes has to respond to messages originating in different
groups. Therefore, in the description of the election procedures
we will assume that the group number checking mechanism
is not applied to the election procedures. If a group number
check is needed in these election procedures, the group number
will be included as a parameter in the CALL statement and
explicitly checked by the called procedure. (As before, we
assume that application procedures are only executed at a node
when its status is “Normal.””)

As in Appendix I, we assume that procedure Timeout is
automatically invoked by the operating system after a period
of no coordinator communication. Similarly, procedure Check
is called periodically and procedure Recovery is called when
a node recovers from a crash.

As discussed in the main body of the paper, the state vector
of each node i includes S (i) - g, the group number of the node.
The state vector also contains S(i) - Up, the list of nodes which
are participating in the current group. (S(i) - Up can be con-
sidered to be a part of S(i) - d, the task description.) A counter
S (i) - counter which keeps track of the groups generated at
node i is also included in the state vector. We assume that the
data in the state vector S(i) is not lost due to a crash,

We now present the procedures that make up the Invitation
Algorithm in the same informal Algol-like language. Code in
the critical region for the state vector, as before, is enclosed in
double brackets [[,]]. Comments are enclosed in double angle
brackets ({)).

PROCEDURE Check (i);
BEGIN
{(This procedure is called periodically by the operating
system.))

IF [[S(i) - s = “Normal” AND S(i) - ¢ = i]] THEN
BEGIN ({See if other groups exist for possible
merge.)).

TempSet :={ }; ((i.e., the empty set))
FORj:=1,2,---,i—1,i+1,---,nDO
BEGIN ((n is the number of nodes in the system))
CALL AreYouCoordinator(j, ans), ONTIMEOUT(T):

58 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 1, JANUARY 1982

NEXT ITERATION;
IF ans = “Yes” then TempSet := TempSet UNION

b

END;

IF TempSet ={ } THEN RETURN;

P := MAXIMUM (TempSet);

IF i < p THEN “wait time proportional to p — i”’;

({The above statement gives the node with highest pri-
ority a chance to organize a merge first. This wait time
should be large as compared to the time between calls
to procedure Check.))

CALL Merge (i, TempSet);

END;

END Check;

PROCEDURE Timeout (i);

BEGIN

{(This procedure is called when node i has not heard from
its coordinator in some time.))

[[MyCoord := S(i) : c; MyGroup := S(i) - g]]

IF MyCoord = i THEN RETURN

ELSE
BEGIN
CALL AreYouThere(MyCoord, MyGroup, i, ans),

ONTIMEOUT (T) : CALL Recovery (i);

IF ans = “No” THEN CALL Recovery (i);
END;

END Timeout;

PROCEDURE Merge (i, CoordinatorSet);

BEGIN

{(This procedure will form a new group with node i as co-
ordinator and will invite coordinators in CoordinatorSet
tojoinin.))

[[S() - s := “Election™;

{(Above statement will prevent node i from accepting
invitations while this procedure is executed.))

CALL STOP;

S(i) - counter := S({) - counter + 1;

S(i) - g := i CONCATENATED S (i) - counter;
S(@):c:=i; TempSet := S(i)-Up; S(i)-Up:={ }1]

FOR j IN CoordinatorSet DO
CALL Invitation (j, i, S(i) - g), ONTIMEOUT (T) :

NEXT ITERATION;

FOR j IN TempSet DO

CALL Invitation (j, i, S(7) - g), ONTIMEOUT (T) :
NEXT ITERATION;

“Wait a reasonable time for accept messages to come in”

[[S(@) - s := “Reorganization”;]]

{(The reorganization of the group with members S(i) - Up
occurs here. When done, node i has computed S(i) - d,
the new task description (which probably includes a copy
of S(7) - Up). If during the reorganization a node in S(i)
- Up does not respond, the reorganization can be stopped
and a new reorganization attempted.))

FOR j IN S(i) - Up DO
CALL Ready (j, i, S(i) - g, S(i) - d), ONTIMEOUT (T) :

CALL Recovery (i);

[[S() - s :=“Normal™;]]

END Merge;

PROCEDURE Ready (i, j, gn, x);

BEGIN

{(Coordinator j of group gn is giving node i the new task
description x.))

[[TF S(i) - s = “Reorganization” AND S(i) - g = gn
THEN
BEGIN
S@)-d:=x;5@) s :=“Normal”;
END;]]

END Ready;

PROCEDURE AreYouCoordinator(i, ans);

BEGIN

({The calling node wishes to know if node i is a coordinator
in normal state, so that it can be invited to join a new
group.)) .

[[tF S(i) - s = “Normal” AND S(i) - ¢ = i THEN ans :=
“Yes”
ELSE ans := “No”;]]

END AreYouCoordinator;

PROCEDURE AreYouThere (i, gn, j, ans);

BEGIN

{(Node j wishes to find out if node i is the coordinator of
group gn and considers node j a member of the
group.))

[IFS(i)-g=gn ANDS(i)- ¢ =i ANDj € S(i) - Up THEN
ans : = “Yes”
ELSE ans := “No”;]]

END AreYouThere;

PROCEDURE Invitation (i, j, gn);
BEGIN
{{Node j invites node i to join group gn.))
[[1F S(i) - s ¢ “Normal” THEN RETURN; { {decline invi-
tation))
CALL STOP; Temp := S(i) - ¢; TempSet := S(i) - Up;
S(i) - s := “Election”; S(§) - ¢ := j; S(i) - g := gm;]]
IF Temp = i THEN ((forward invitation to my old mem-
bers))
FOR k IN TempSet DO
CALL Invitation (k, j, gn), ONTIMEOUT(T) :
NEXT ITERATION;
CALL Accept (J, i, gn), ONTIMEOUT (T) :
CALL Recovery (i) ;
[[S() - s :== “Reorganization”;]]
END Invitation;

PROCEDURE Accept (i, j, gn);

BEGIN

{(Node j has accepted the invitation of node i to join group
gn.)) ’

[[1F S(#) - s = “Election” AND S(i) - g = gn AND S(i) - ¢
= [THEN

S(#) - Up := S(i) - Up UNION {j};]]
END Accept;

PROCEDURE Recovery (i);
BEGIN
({Node i is recovering from a failure.))

GARCIA-MOLINA: DISTRIBUTED COMPUTING SYSTEM

[[S(i) - s := “Election”; CALL STOP;
S (i) - counter := S(i) - counter + 1;
S(i) - g := | CONCATENATED S (i) - counter;
S@i)-c:=i;8@)-Up:={};
S(i) - s := “Reorganization”;
({A single node task description is computed and placed
in:S() - d.))
S (i) - s := “Normal’;]]
END Recovery;

Theorem A3: The Invitation Algorithm under Assumptions
1-7 satisfies Assertion 3.

Informal Proof: When a node i generates a new group
number S (i) - g, it is free to place any value in S(i) - ¢ and S(7)
- d, since the number S'(i) - g is unique and has never been used
before. So the assertion is never violated in the process of
generating new groups. When a node j stores a group number
S(i) - g which it did not generate into S(j) - g, then node j can
only store S(i) - c and S(i) - d into its S(j) - c and S(j) - d, re-
spectively (where S(i) - ¢ and S (i) - d were generated with S(i)
- g). Thus, the group number S (i) - g can never appear in any
state vector with coordinator identification or task description
which do not correspond. This means that Assertion 3 is sat-
isfied. m]

Theorem A4: The Invitation Algorithm under Assumptions
1-7 satisfies Assertion 4.

Informal Proof: Take a system with a set of operating
nodes which can all communicate with each other and assume
that no failures occur. Since there are no communication
failures and nodes do not pause, no call statements will ever
timeout.

Any nodes which are not participating in a normal group
will eventually discover this (through procedure Timeout) and
will form single node groups. Periodically, coordinators look
for other coordinators and attempt to merge their groups. Since
no new failures occur, merge attempts will either be successful
or will leave the groups unchanged. By properly selecting the
wait time in procedure Check, the possibility of repeated
conflict between two groups attempting to merge can be
eliminated, at least when no failures occur. (For example, if
node i in procedure Check discovers a coordinator j with higher
priority, then i can wait for at least 2P seconds, where P is the
time between calls to procedure Check. This will give node j
enough time to perform the merge without interference from
node i.) Thus, eventually all operating nodes in the system will
join a single group. |

ACKNOWLEDGMENT

Several useful ideas and suggestions were provided by S.
Davidson, J. Kent, G. Le Lann, L. Svobodova, and the ref-
erees.

59

REFERENCES

[1] E.R. Berlekamp, Algebraic Coding Theory, New York: McGraw-Hill,

1968.

E. W. Dijkstra, “Solution of a problem in concurrent programming

control,” Commun. Ass. Comput. Mach., vol. 8, p. 569, Sept. 1965.

[3] C. A. Ellis, “Consistency and correctness of dupliicate database sys-
tems,” in Proc. 6th Symp. Operating Syst. Principles, Nov. 1977, pp.
67-84.

[4] P. H. Enslow, “What is a distributed data processing system?,” Com-
puter, pp. 13-21, Jan. 1978.

[5] H. Garcia-Molina, “Performance of update algorithms for replicated
data in a distributed database,” Dep. Comput. Sci., Stanford Univ.,
Stanford, CA, Rep. STAN-CS-79-744, June 1979.

[6] J. N. Gray, “Notes on database operating systems,” in Advanced Course
on Operating System Principles. Munich, West Germany: Technical
Univ., July 1977.

[7] L. Lamport, “A new solution of Dijkstra’s concurrent programming
problems,” Commun. Ass. Comput. Mach., vol. 17, pp. 453-455, Aug.
1974.

2

—

[8] , “Time, clocks, and the ordering of events in a distributed system,”
Commun. Ass. Comput. Mach., vol. 21, pp. 558-564, July 1978.

[9] , “The implementation of reliable distributed systems,” Comput.
Networks, vol. 2, pp. 95-114, 1978. :

[10] B. W. Lampson and H. E. Sturgis, “Crash recovery in a distributed data
storage systems,” Xerox PARC Rep., 1979.

[11] G. Le Lann, “Distributed systems—Towards a formal approach,” in
Information Processing 77, B. Gilchrist, Ed. Amsterdam, The
Netherlands: North-Holland, 1977, pp. 155-160.

[12] D. A. Menasce, G. J. Popeck, and R. R. Muntz, “A locking protocol for
resource coordination in distributed databases,” ACM Trans. Database
Syst. vol. 5, pp. 103-138, June 1980.

[13] R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed packet
switching for local computer networks,” Commun. Ass. Comput. Mach.,
vol. 19, pp. 395-404, July 1976.

[14] D.S. Parker et al., “Detection of mutual inconsistency in distributed
systems.” in Proc. 5th Berkeley Workshop Distributed Data Manage-
ment Comput. Networks, Feb. 1981, pp. 172-184.

[15] M. O. Rabin, “N-process synchronization by 4 log (base 2) N-valued
shared variable,” in Proc. 21th Annu. Symp. Foundations Comput. Sci.,
Oct. 1980, pp. 407-410.

[16] J. B. Rothnie and N. Goodman, “A survey of research and development
in distributed database management,” in Proc. 3rd VLDB Conf., Tokyo,
Japan, 1977, pp. 48-62.

[17] F. B. Schneider, “Synchronization in distributed programs,” Dep.
Comput. Sci., Cornell Univ., Ithaca, NY, Tech. Rep. TR79-391, Jan.
1980.

[18] R.G. Smith, “The contract net protocol: High level communication and
control in a distributed problem solver,” in Proc. Ist Int. Conf. Dis-
tributed Comput. Syst., Huntsville, AL, Oct. 1979, pp. 185-192.

[19] M. Stonebraker, “Concurrency control and consistency of multiple copies
of data in distributed INGRES,” IEEE Trans. Software Eng., vol. SE-5,
pp. 188-194, May 1979.

[20] R.H. Thomas, “A majority consensus approach to concurrency control,”
ACM Trans. Database Syst., vol. 4, pp. 180-209, June 1979.

Hector Garcia-Molina (S’70-M’79) received the
B.S. degree in electrical engineering from the Inst-
ituto Tecnologico de Monterrey, Monterrey, Mex-
ico in 1974, and the M.S. and Ph.D. degrees in
computer science from Stanford University, Stan-
ford, CA.

Currently, he is Assistant Professor in the De-
partment of Electrical Engineering and Computer
Science at Princeton University, Princeton, NJ.
His research interests include distributed comput-
ing systems and database systems.

Dr. Garcia-Molina is a member of the Association for Computing Ma-
chinery.

