ResearchGate

See discussions, stats, and author profiles for this publication at:

Distributed election in computer networks

Conference Paper - April 1988

DOI: 10.1109/PCCC.1988.10097 - Source: IEEE Xplore

CITATION READS
1 23

3 authors, including:

’ National Tsing Hua University g University of Macau

207 PUBLICATIONS 998 CITATIONS 501 PUBLICATIONS 20,896 CITATIONS
SEE PROFILE SEE PROFILE
All content following this page was uploaded by on 14 August 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/3496716_Distributed_election_in_computer_networks?enrichId=rgreq-132e37aa8308404c39ed99cfae0e1392-XXX&enrichSource=Y292ZXJQYWdlOzM0OTY3MTY7QVM6MTMwMTEzMjUzNDE2OTYxQDE0MDgwMzI4MjU0ODM%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/3496716_Distributed_election_in_computer_networks?enrichId=rgreq-132e37aa8308404c39ed99cfae0e1392-XXX&enrichSource=Y292ZXJQYWdlOzM0OTY3MTY7QVM6MTMwMTEzMjUzNDE2OTYxQDE0MDgwMzI4MjU0ODM%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-132e37aa8308404c39ed99cfae0e1392-XXX&enrichSource=Y292ZXJQYWdlOzM0OTY3MTY7QVM6MTMwMTEzMjUzNDE2OTYxQDE0MDgwMzI4MjU0ODM%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chung-Ta_King?enrichId=rgreq-132e37aa8308404c39ed99cfae0e1392-XXX&enrichSource=Y292ZXJQYWdlOzM0OTY3MTY7QVM6MTMwMTEzMjUzNDE2OTYxQDE0MDgwMzI4MjU0ODM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chung-Ta_King?enrichId=rgreq-132e37aa8308404c39ed99cfae0e1392-XXX&enrichSource=Y292ZXJQYWdlOzM0OTY3MTY7QVM6MTMwMTEzMjUzNDE2OTYxQDE0MDgwMzI4MjU0ODM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Tsing_Hua_University?enrichId=rgreq-132e37aa8308404c39ed99cfae0e1392-XXX&enrichSource=Y292ZXJQYWdlOzM0OTY3MTY7QVM6MTMwMTEzMjUzNDE2OTYxQDE0MDgwMzI4MjU0ODM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chung-Ta_King?enrichId=rgreq-132e37aa8308404c39ed99cfae0e1392-XXX&enrichSource=Y292ZXJQYWdlOzM0OTY3MTY7QVM6MTMwMTEzMjUzNDE2OTYxQDE0MDgwMzI4MjU0ODM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lionel_Ni?enrichId=rgreq-132e37aa8308404c39ed99cfae0e1392-XXX&enrichSource=Y292ZXJQYWdlOzM0OTY3MTY7QVM6MTMwMTEzMjUzNDE2OTYxQDE0MDgwMzI4MjU0ODM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lionel_Ni?enrichId=rgreq-132e37aa8308404c39ed99cfae0e1392-XXX&enrichSource=Y292ZXJQYWdlOzM0OTY3MTY7QVM6MTMwMTEzMjUzNDE2OTYxQDE0MDgwMzI4MjU0ODM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macau?enrichId=rgreq-132e37aa8308404c39ed99cfae0e1392-XXX&enrichSource=Y292ZXJQYWdlOzM0OTY3MTY7QVM6MTMwMTEzMjUzNDE2OTYxQDE0MDgwMzI4MjU0ODM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lionel_Ni?enrichId=rgreq-132e37aa8308404c39ed99cfae0e1392-XXX&enrichSource=Y292ZXJQYWdlOzM0OTY3MTY7QVM6MTMwMTEzMjUzNDE2OTYxQDE0MDgwMzI4MjU0ODM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chung-Ta_King?enrichId=rgreq-132e37aa8308404c39ed99cfae0e1392-XXX&enrichSource=Y292ZXJQYWdlOzM0OTY3MTY7QVM6MTMwMTEzMjUzNDE2OTYxQDE0MDgwMzI4MjU0ODM%3D&el=1_x_10&_esc=publicationCoverPdf

DISTRIBUTED ELECTION IN COMPUTER NETWORKS'

k% *
Chung-Ta King,* Thomas B. Gendreau, Lionel M. Ni

*
Department of Computer Science
Michigan State University
East Lansing, Michigan 48824

ABSTRACT: Election in a computer network is an operation which
selects one process from among a group of processes, perhaps residing
in different computers in the network, to perform a particular task. It is
found that many problems in computer networks exhibit the behavior
of election or can be solved by means of election. Examples include
mutual exclusion, load balancing, fault recovery, group joining, and
replicated data updating. In this paper, an election is characterized by
1) the capacities obtained by the evaluation of a criterion function at
each candidate process and 2) an agreement reached by all processes in
the group to elect the master process. A number of election algorithms
are presented based on various conditions and environments, including
process fault behavior, process timing relations, and communication
subsystem supports. These algorithms allow all fault-free processes to
elect one and only one process as the master, and, by changing the
definition of the criterion function, they can be applied to a variety of
applications in a computer network.,

1. INTRODUCTION

The ultimate goal of a computer network is to provide the users with
a unified service environment, in which resource allocation and access are
transparent to the users. Election is an operation in which one process from
among a group of processes is singled out to perform a particular task. In
providing unified service environment, many problems in computer net-
works exhibit the behavior of election or can be solved through election.
Examples include mutual exclusion, replicated data updating, group joining,
load balancing, and crash recovery.

There has been a substantial amount of work dealing with election on
a logical or physical ring network {5, 8]. The problem is to find the process
having the maximum value in the ring and the issues considered include
synchronous versus asynchronous and uni-directional versus bi-directional
communication. Election in arbitrary networks is studied in [6], where two
election algorithms: Bully and Invitation algorithm are proposed. Recently,
an election algorithm for distributed clock synchronization is reported [7].
An unreliable network is assumed, in which messages may be lost or
delayed and processes can have fail-stop faults.

In this paper, we abstract the concept of election to define a very gen-
eral style of computation in computer networks. The model to describe the
election algorithms will be presented in Section 2. The election problem is
then defined in Section 3, and algorithms to perform elections under syn-
chronous systems (Section 4), partial synchronous systems (Section 5), and
asynchronous systems (Section 6) are given. Finally, applications of the
election are discussed in Section 7 and our conclusion is given in Section 8.

2. AN FSM MODEL

A computation in a computer network consists of a number of
processes, possibly residing on different machines, which solve a given
problem through message-based coordination and communication. A
model is used to characterize the coordination of processes in a computa-

 This research was supported in part by the State of Michigan REED project and in part by
the DARPA ACMP project

0896-582X/87/0000/0348%01.00 © 1988 IEEE

**Department of Computer Science
Vanderbilt University
Nashville, TN 37235

tion. The model consists of a set of assertions, which expresses the proper-
ties and conditions that the computation must obey as a whole, and a set of
finite state machines (FSM), which describes the behavior of individual
processes. State transitions are triggered by events. Three possible events
are message arrival, clock time-out, and process failure. Each FSM
describes one process and is expressed as follows:

M =(5.1,0,8,50,Pr), where
§ = PXV = the set of states of the FSM
I'= (EXDxUy) U x U F = the set of input events to the FSM
O = (ExDxUy) x ¢ = the set of outputs from the FSM
8: SxI—S8x0 = the state transition function
5o = the starting state, sy §
Pr = the set of final phases, Pre P
and
V= (v1,v2,...) = variable vector of the FSM
P = the set of phases of the FSM
Z = alphabet of the messages
D = the set of process id of neighboring processes
Uy = the set of all subvectors of V
X = time-out status
F = the set of process failure status
¢ = clock value

Note that both normal and faulty behaviors of processes can be
specified in the model, which makes fault analysis more easier. A clock or
timer is associated with each process. Setting a timer can be viewed as
sending a message to the timer process, and a time-out is Jjust a message (or
interrupt) from the timer process.

3. THE ELECTION PROBLEM

Let Q denote the group of processes participating in the election and
n=1Q | be the number of processes in Q. A subset of processes in Q will
be designated as candidates, Q., and the election can be characterized by:
(1) A criterion function f(.) evaluated by each candidate process p;e Q. to
obtain its capacity v;; (2) An agreement reached by every process in Q to
elect a master from Q. based on the capacities. Two sets of processes are
identified at the end of an election:

Om = (peQ | p assumes itself to be the master }
Ome = { peQ | there exists ge Q such that
q assumes p to be the master }

We say that an election algorithm satisfies the deadlock-free pro-
perty, if, at the end of the election, there is at least one process elected
(1Qm 1>0). An election algorithm satisfies the uniqueness property, if, at the
end of the election, all processes elect the same process as the master
(1Qmc | =1). There are other properties which are specific to applications.
For example, the fairness property, which states that a candidate will even-
tually be elected, is very important in mutual exclusion or group joining.

The possibility of process failure requires consideration of the follow-
ing aspects:

(1) Fault model: The faults of a process may range from simple fail-stop
faults, where a faulty process will stop processing and keep silent, o

Byzantine faults, where a process may act in an arbitrary and malicious
manner [9]. Intermediate fault models are possible.
Requirements under a certain fault model: Failure of processes causes
the properties defined above very hard to hold. Thus, in a Byzantine
environment, for example, the deadlock-free and uniqueness properties
are have to be relaxed as follows:
« Deadlock-free Property: If the elected master is fault-free, then it
will assume itself to be master.
o Uniqueness Property: All fault-free processes will elect the same
process as the master.
Finally, assumptions of the election algorithms are listed as follows:
(1) Communication subsystem: A communication subsystem collectively
refers to the lower layer protocols which provide communication ser-
vices to the layer where the election is running. A communication sub-
system supports reliable broadcast if (a) every broadcast message is
delivered to all receivers within some known time bound, T; (b) all
broadcast messages from all senders are delivered in the same order;
and (c) every broadcast message is either delivered to all receivers
correctly or not delivered to any of them at all [1, 2].
Process behavior: Assumptions related to the behavior of a process
include its fault model and the time it spends in replying a message. If
this time is negligible to compare with the interprocess communication
time, then we say that the process do not pause in responding.
Timing: Local clocks of all processes may be assumed to keep full
synchrony, run at the same rate, differ only within 2 known bound, ¢,
or be out of synchrony completely. Other issues of the timing are when
the algorithm starts and whether all processes start executing the algo-
rithm at the same time.

@

@

©)

4. ELECTION IN A SYNCHRONQUS ENVIRONMENT

A synchronous system is a system in which the communication delay
T is defined, processes respond with no pause, local clocks are running at
the same rate, and all processes start the election at the same time. Note that
2T is the maximum time one has to wait for a reply. Algorithm A intro-
duced in this section is a synchronous algorithm which uses only one round
of information exchange. The purpose of introducing Algorithm A is first
to motivate our subsequent discussions and to serve as a lower bound for
comparison with subsequent algorithms.

<Algorithm A>
1. Conditions:
1.1. Processes start the election at the same time.
1.2. Processes are correct at the beginning of the election.
1.3. Processes do not pause and use clocks of the same rate.
1.4. Recovery time of a failed process is longer than the election time.
1.5. Communication subsystem supports reliable broadcast.
2. Variables:
2.1. rd = arandom value
2.2. ck = current local clock value
2.3. Timer = system time-out timer
2.4. fi.) = criterion function
2.5. v = capacity; f{.) for a candidate and -1 for a non-candidate
2.6. ms = id of the elected master
2.7. § = candidate list
2.8. max(S) = the process in S with the maximum capacity
3. FSM Descriptions:
3.1. M =(5,1,0,8,5,Pr), where
P = {start,wait,stop fail)
V= (v.ms.S)
5o = (start,(vms=-1,5=D))
Pr = {stop fail)
and
8((start,(v.-1,D)).()) = ((wait,())(all (v)).ck+T)
S((wait,(v,-1,5)).(.(w)) = ((wait,(v-1.SO{(iw)O)0) J € S
8((wait,V) time-out) = ((stop,(v,max(S).5)).().0))
8((wait,V) fault) = ((fail, V),().ck+rd)
8((fail,V) time-out) = ((fail,V),(rd.(rd)).ck+rd)

349

Table 1. The state transition table describing Algorithm A

P | Pres. Phase start wait fail
Time-out? true true
I | reev(j,"%")? w
Fault? true
V]jeS§? false
v SeSu% {(j.v)}
ms<% max(§)
o Timer<% ck+T ck+rd | ck+rd
send(%) all,y rd,rd
P [Next Phase wait wait stop fail fail
Transition 1 2 3 4 5

Table 1 tabulates the state transitions of the FSM. A null entry in the
condition part implies a don’t care event. The symbol % in the second
column is a place-holder, its content is listed in the corresponding row
entry.
This algorithm uses only one round of information exchange, which
takes T units of time, and requires n broadcast messages. Notice the
specification of faulty behavior (Transition 5). If the time-out interval, rd,
approaches infinity, then this process experiences a fail-stop fault. On the
other hand, if the random message contains a legal capacity value, then this
is a Byzantine behavior. Initiation of the algorithm is application depen-
dent, and is not specified.

1t is trivial to see that all correct processes will terminate at #+7,
where ¢, is the absolute time the election began. Also, due to reliable
broadcasting, all correct processes will receive the same set of messages
during the interval ¢, through #+T in the same sequence. This guarantees
that they have the same candidate list S at ¢+7 and elect the same process
(ms = max(S)) as the new master. If the new master is fault-free, it will also
have the same candidate list S and assume itself to be the master. Thus
deadlock-free and uniqueness property are assured. On the other hand, if
any of the conditions listed in Algorithm A were violated, then it is easy to
find counter examples which result in inconsistency in candidate lists and
cause the algorithm fail.

5. ELECTIQN WITH PARTIAL SYNCHRONY

Unlike synchronous systems, a partial synchronous system is a sys-
tem that all processes will start their election within the time interval ¢,
through #,+7, where ¢, is the time the first process starts the election. Note
that, after T units of time, all processes will receive at least one election
message and be informed of the election.

5.1. Algorithm B.1 — The Fail-stop Case

<Algorithm B.1>
1. Conditions:
1.1. Processes do not pause and use clocks of the same rate.
1.2. Recovery time of a failed process is longer than the election time.
1.3. Communication subsystem supports reliable broadcast.
2. Variables:
2.1. candid = true, if the process is a candidate
see Algorithm A for definitions of other variables.
3. FSM Descriptions:
3.1. M =(5.1,0,8,5¢,Pr), where
P = {normal collect fail,stop)
V = (candid,v,ms.S)
5o = (normal,(true/false,y.ms=-1,5=D))
Pp = {stop fail)
and the state transitions are given in Table 2.

It is again trivial to see that the algorithm terminates and all correct
processes will have the same $ at the end of the election. Note that fail-stop
failure will cause problem only when a failed process is elected. In such a
case a time-out (with period of 2T) is sufficient to indicate that the master
has failed and a new election should begin. The whole algorithm takes at

Table 2. The state transition table describing Algorithm B.1

P | Pres. Phase normal collect
Time—out? true

I | _recv(j,”%")? w w w
Fault? true true

V | candid=%? tru true false

v 5<%) | {Gv).(w)} | {(iw)} Suf(jw)}
ms<% max(S)

o Timer <% ck+2T ck+2T ck+2T | ck+eo ck+oo
send(all,"%") v v

P | Next Phase collect collect collect fail collect stop fail
Transition 1 2 3 4 S 6 7

most 3T and O (n) broadcast messages. The worst case (37) happens when

one process starts the election at £,+T and finish at ¢,+37T.

$.2. Algorithm B.2 — The Malicious Case

When processes start the election at different times, a malicious pro-

cess may cause state inconsistency by delaying the sending of some mes-

sages such that different processes receive the same message at different

phases and make different decisions. Through reliable broadcasting, Algo-
rithm B.2 uses 2T to exchange capacities, and another 2T to ensure the con-

sistency of all $’s. Suppose there are at most ¢ faulty processes, then the

algorithm is as follows:

<Algorithm B.2>
1. Conditions:
1.1. Communication subsystem supports reliable broadcast.
1.2. Processes do not pause and use clocks of the same rate.
1.3. Recovery time of a failed process is longer than the election time.
2, Variables:
2.1. Y= the ordered list of §’s received from other processes
see Algorithm A for definitions of other variables.
3. FSM Descriptions:
3.1. M =(51,0,8,50,Pr), where
P = {(normal.colll coll2,stop fail)
V = (candid,v,ms,5.Y)
So = (normal,(true/false,v=f(.)ms=-1§ =@,Y=D))
Pr = {stop fail)
and the state transitions are given in Table 3.
O
The operation §+(j,w) in Transition 5 denotes the appending of an
entry (j,w) to the end of S. The function el(Y) (Transition 9 in Table 3)
obtains ms by (1) choosing a sublist ¥* from Y, and (2) determining a pro-
cess in Y’ to be ms. Note that the uniqueness property is preserved if every
correct process chooses the same Y and ms out of their local Y. A possible
procedure to compute el (Y) is shown below. All elements in the lists are
indexed according to the order they are received.

<Function el(Y)>
L input:
LL Y=((1.51), ?2.82).... (9;,5,)), n—t < j <n, where

pr = process id, 1<I<j
§; = the § list received from process p;;
1.2. §=((¢1.v1), (92,V2)s..., (qrV)), where
q; = process id of a candidate, 1</<k
v; = capacity of the candidate g,.
2. define:
2.L Y =((P1,81)eres PretsSace));
3. output:
3.1. ms < max(S;), if there exists p;eY and (g;,v;) € S, such that
Pj = q:, and (g;,v;) is the first such entry in S;
ms < max (S,), otherwise.

Since there are at least n—t correct processes and all messages are
delivered in the same sequence, Y in every process is guaranteed to have at
least n—t entries (all in the same sequence). Thus, Y, as in Statement 2.1
above, is guaranteed to be the same in every correct process. Next, to select
a process in Y” to be the master, we check each candidate according to the
order that capacities are received to see whether its § list is also received. If
so, then the corresponding S list is used to select the new master (Statement
3.1 in el (Y)). Otherwise, we use §,, because the § list collected by ¢, is
probably the one that is least influenced by malicious processes.

Algorithm B.2 takes 5T to complete the election and uses 0 (2n)
broadcast messages. Note that it is not necessary to transmit the whole set
of § in the second round of information exchange, because all processes
receive all messages in the same sequence. A number indicating the size of
local S will be enough.

5.3 Malicious Case in Unorder Broadcasting System

To find election algorithms under unordered broadcasting environ-
ments, algorithms developed for the Byzantine General's problem can be
adopted. Byzantine agreement, in its simplest form, is an agreement on
either 0 or 1, with all processes starting with either 0 or 1. In order to use
Byzantine algorithms, we must transform the election problem, in which
processes have diversed capacities initially, into that of reaching agreement
on common initial data.

Algorithm B.2 performs the transformation by exchanging § in each
process to form a vector Y and reaching agreement on ¥ [10]. Nevertheless,
due to malicious behavior, even these Y lists are not the same for all correct
processes. What we need is another level of transformation that decides

Table 3. The state transition table describing Algorithm B.2
P | Pres. Phase normal colll coll2 fail
Time—out? true true true
1 recv(j,"%") init,w init,w init,w vect, T
Fault? true true true
V_| cadid? true true false
S<% (.w) ((AD) S+(jw)
V [Y% Y+(i.T)
ms<«—% el(Y)
Timer<% ck+2T | ck+2T | ck+2T | ck+rd ck+2T | ck+rd ck+rd | ck+rd
send(all,"%") | init,v init,v vect,S rd
P_| Next Phase colll colll colll fail colll coll2 fail coll2 stop fail fail
Transition 1 2 3 4 5 6 7 8 9 10 11

350

Table 4. The state transition table describing Algorithm C

P | Pres. Phase normal colll coll2
Time —out? __ true true true
recv(j,"%") init,w initw | elected | dup:k,l| initw elected | dup:k,!
v candid? true true false
i=max (S)? false | true -
v S<% (@) | (GW.Gw) W (AD)! {1 soli} | Sulkd)
mse—% i i
Timer<% ck+2T ck+2T ck+5T | ck+3T | ck+3T ck+3T | ck+3T
0 1'%")_|_iniLv iniLy clected | dup:ij
P_| Next Phase colll coltl waitl | wai? | wait3 | colll | wail | coll2 | coli3 coll3 | master |
Transition 1 2 3 4 5 6 7 8 9 10 11
@
P_| Present Phase coll3 waitl wait2 wait3 |
1 Time .—out? true true true trae true
recv(j,"%") lected | dup:k,! elected | dup:k,! elected | dup:k,!
V_| i=max(S)? _true f;
v S<% Suli] | Sulkl} {i}
ms<% i i
Timer<% ck+3T | ck+3T ck+2T ck+3T
O | send(all"%") | dup:i,j elected dup:j,ms
send(sys."%") help!
P_| Next Phase coll3 coll3 coll2 waitl | wait? wait3 it wait3 wait3 waitl
Transition 12 13 14 15 16 17 18 19 20 21 22
()
which entry (p;,S;) in Y is going to be incorporated into Y. This is nothing a1 i
buta 0 or 1 choice, and can be solved by Byzantine algorithms. Poat E(E IV 1 Xo=i]+)X Py
EIN | Xg=al= = m

6. ELECTION WITH UNR] E BROADCASTIN

An unreliable communication subsystem may lose messages or
deliver erroneous messages. This can cause the following problems: (1)
process failure and message loss sometimes can not be distinguished, (2)
any number of candidates (including none) may assume themselves to be
elected, (3) different processes may elect different candidates, and (4) some
processes may not be aware of the election. Our approach here is to reduce
the number of competitors in each successive round by allowing only those
duplicated mastéTs to compete in the next round. As will be shown later, the
possibility that the algorithm may fail is very small.

<Algorithm C>
1. Conditions:
1.1. Processes do not pause and use clocks of the same rate,
2, Variables:
Same as in Algorithm B.1.
3. FSM Descriptions:
See Table 4a and 4b.

In the each round of the election, duplicated masters is detected by
receiving messages from more than one master (Transitions 9,12). Should
this happen, a warning message, “dup: k", is immediately broadcast to
inform all others and a new round is necessary. On the other hand, if no
duplicated master announcements are received, a candidate will stop and
become the new master (Transition 15). Each round of the election will
take 37 to complete, because processes will start a new round within T and
it takes 27 to get a response. Note that, in Transition 18, a non-candidate
may not receive anything during an interval (37 in this case). In our algo-
rithm, an error message ("help!”) is returned to the operating system or the
user (sys) to indicate this situation.

The efficiency of Algorithm C can be characterized by the number of
rounds to accomplish the election. Given that a process will miss a broad-
cast message (due to message error or loss) with probability p, we can find
the expected number of rounds of the election to be

351

1-P,,

where (X, = a) is the event that there are a candidates at the beginning of
the election, and P;; is the probability that j candidates will continue to the
next round given that there are i candidates at the beginning of the round.
Detailed derivation is given in the Appendix. Figure 1 shows the expected
number of rounds (E [N]) versus the number of candidates (a) at the begin-
ning of the election. It can be seen that with the probability of message loss
less than 0.3 the expected number of rounds is no more than 3 (97).

JCATIONS OF ELECTI

The election algorithms described so far are very independent of
specific applications. What makes applications of the election differ from
one another is the different definitions of the criterion functions. In this
section we shall concentrate on defining the criterion function for different
applications.

Number of
Rounds

T
1

1T T 1T 1
3 4 5 6 1

Number of Candidates
Figure 1. Expected number of rounds for Algorithm C

T
8

]
9

T 1

T
2 10 11

. Group Server: In a computer network, servers which manage a repli-

cated resource form a group server [3]. To provide a unified service
environment, the group server should choose the most appropriate
server by itself, and one possible way to choose is through election. An
election is initiated by a user request and capacities are evaluated
according to such criteria as load and location.

Load Balancing: A load-balancing algorithm using election differs
from other algorithms [4,11] in that all the interested processors com-
pete and elect the processor that should execute a new job. The distri-
buted nature of election increases the system’s ability of tolerating fault.
The criterion function is defined by the load of the processor.

. Replicated Data Updating: All the servers managing a replicated daia

set form a group server. To prevent data inconsistency, only the process
which has gained control on a majority of the replicated data can per-
form the updating. This can be accomplished through an election. All
processes which request the updating become the candidates.

. Crash Recovery: In a group server, if a server crashed in the middle of

service, then a new server should be found to continue the service.
Again this can be done through election. Another possible situation
would be that the whole network is partitioned into several subnet-
works. Then an election should be performed to determine a master pro-
cess to handle the whole recovery process [6]. In this case the process id
will be sufficient to serve as the capacities.

. Joining Group: When a resource is installed or repaired, the

corresponding server must join the group server to provide coherent ser-
vice. This can proceed in the form of election, where the new process
initiates the election and becomes the candidate. It is admitted to the
group if it collects a majority of yes’s.

. Mutual Exclusion: The similarity of the election and mutual exclusion

has already been pointed out [6]. Whenever a process exits a critical
section, all processes intending to enter the critical section can compete
through an election and the elected master can enter the critical section.
Criterion function can be defined as the time since the last time a pro-
cess entered the critical section and/or its priority.

8. CONCLUSION
We have presented in this paper the use of election as a style of prob-

lem solving in computer networks. The problem is defined and several
election algorithms are proposed under various environments. We have
shown that election is a very general problem in providing unified service
environment in computer networks. By choosing appropriate criterion
functions, we can apply the election technique to many different applica-
tions in a computer network. As the size of networks increases, systems are
becoming more and more complicated. As a result, systems might have to
adopt a hierarchical configuration, such as group computing, to handle the
increasing complexity. Elections will play a fundamental role in such an
environment. Our algorithms are a first step towards developing reliable
algorithms for these large scale systems.

{1]

[2]
31
]
(51

REFERENCES

F. Cristian, H. Aghili, R. Strong, "Atomic Broadcast: From Simple
Message Diffusion to Byzantine Agreement,” [EEE 1985 Fault-
Tolerant Computing, 1985, pp. 200-206.

JM. Chang, N.F. Maxemchuk, "Reliable Broadcast Protocols,” ACM
Trans. Computer Systems, Vol. 2, No. 3, 1984, pp. 251-273.

D.R. Cheriton, W. Zwaenepoel, "Distributed Process Groups in the V
Kemel," ACM Trans. on Computer Systems, May 1985, pp. 77-107.
D.J. Farber, "The Distributed Computing System,” Proc. Compcon
Spring 73, 1973, pp. 31-34.

G.N. Frederickson, N.A. Lynch, "The Impact of Synchronous Com-
munication on the Problem of Electing a Leader in a Ring," Proc. 1984
ACM Symp. on Theory of Computing, 1984, pp. 493-503.

352

[6]
7

(8]

(91

H. Garcia-Molina, "Elections in a Distributed Computing System,"
IEEE Trans. on Computers, Vol. C31,No. 1, Jan. 1982, pp. 48-59.

R. Gusella, S. Zatti, "An Election Algorithm for a Distributed Clock
Synchronization Program,” Proc. 6th Int’l Conf. on Distributed Com-
puting System, May, 1986, pp. 364-367.

G. Le Lann, "Distributed Systems -- Towards a Formal Approach,”
Information Processing 77,1977, pp. 155-160.

L. Lamport, R. Shostak, M. Pease, "The Byzantine Generals Prob-
lems," ACM Trans. Programming Languages and Systems, Vol. 4, No.
3, July 1982, pp. 382-401.

[10] B.M. McMillin, L.N. Ni, "Byzantine Fault-Tolerance through

Application-Oriented Specification,” to appear in the Proc. of 11th
COMPSAC, Tokyo, Japan, Oct. 1987.

[11] L.M. Ni, C.W. Xu, T.B. Gendreau, "A Distributed Drafting Algorithm

for Load Balancing,” IEEE Trans. on Software Engineering, Oct.,
1985, pp. 1153-1161.

APPENDIX — ANALYSIS OF ALGORITHM C

Notations:

p
X;
a

N

Pi

Pi;

= probability that a process will miss a message
= the number of duplicated masters at the beginning of the i-th round
= number of candidates to begin the election; Xo =a
= the number of rounds to complete an election
= probability that the master with the i-th largest capacity will continue
to next round; py = 1
= probability that j masters will continue to the next round given i to
begin with
We shall first find P;; recursively. Suppose a = 2, and, then, the

duplicated master with the smaller capacity will continue to the next round
only if it did not receive any election message from the other candidate.
Thatisp; = 1and p, = p. Thus

P, = Pr[both candidates continue to the next round) =p, Xpy =p

P, =Prlp, continues and p, quits] =p; X (1-p2)=1-p

In general, for any P; ;, i 2 j + 1 we have:

P;; = Pr[j canidates continue | p; quits] x Pr{p; quits] +

Pr[j—1 canidates continue | p; continues] X Pr{p; continues]
=P X1 —p)+Piyj Xpi

where Py, =p, Py; =1-p,and p; =p*~'. Thatis

Pio i X(1=p)+Piy,ja XPi ifi>j
ieyz ifio)
0 if i <j

P=

We can now recursively derive E[N | X = a] as follows:

EIN1Xg=1}=1

EN IXO:a]=iE[N I Xo=a, Xy =ilxPr[X,=i]

i=1

=i(E[N I Xo=il+1)x P,

i=1

It follows that

a-1
Pogt SEIN | Xg=il+1)xP,;
EIN | Xg=al= =l

1-P,,

https://www.researchgate.net/publication/3496716

