
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/289444.289469
.

.

ARTICLE

Operational transformation in real-time group editors: issues,
algorithms, and achievements

CHENGZHENG SUN, Griffith University, Brisbane, QLD, Australia
.

CLARENCE (SKIP) ELLIS, University of Colorado Boulder, Boulder, CO, United States
.

.

.

Open Access Support provided by:
.

Griffith University
.

University of Colorado Boulder
.

PDF Download
289444.289469.pdf
16 February 2026
Total Citations: 335
Total Downloads: 7669
.

.

Published: 01 November 1998
.

.

Citation in BibTeX format
.

.

CSCW98: Computer Supported
Cooperative Work
November 14 - 18, 1998
Washington, Seattle, USA
.

.

Conference Sponsors:
SIGGROUP
SIGCHI

CSCW '98: Proceedings of the 1998 ACM conference on Computer supported cooperative work (November 1998)
hps://doi.org/10.1145/289444.289469

ISBN: 1581130090

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/289444.289469
https://dl.acm.org/doi/10.1145/289444.289469
https://dl.acm.org/doi/10.1145/contrib-81409597515
https://dl.acm.org/doi/10.1145/institution-60032987
https://dl.acm.org/doi/10.1145/contrib-81406595676
https://dl.acm.org/doi/10.1145/institution-60000221
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60032987
https://dl.acm.org/doi/10.1145/institution-60000221
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F289444.289469&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/cscw
https://dl.acm.org/conference/cscw
https://dl.acm.org/sig/siggroup
https://dl.acm.org/sig/sigchi
http://crossmark.crossref.org/dialog/?doi=10.1145%2F289444.289469&domain=pdf&date_stamp=1998-11-01

.—.——___ ___ .:. .
.-—-

Operational Transformation in Real-Time Group Editors:

Issues, Algorithms, and Achievements

Chengzheng Su Clarence (Stip) EHis
School of Computing and Morrnation Technolo~ Department of Computer Science

Gr~th Universi~
Brisbane, Qld 4111, Austratia

scz@cit.gu.edu.au
http://mw-cit.gn.edu-au/~scz

ABSTRACT
Rd-time group editors dow a group of users to view and
edit, the same document at the same time horn geograpbi-
cdy di.~ersed sites connected by communication networks.
Consistency maintenance is one of the most si@cant &a-
lwiges in the design and implementation of thwe types of
systems. R=earch on rd-time group editors in the past
decade has invented au inuolative tetique for consistency
maintenance, ded operational transformation This paper
presents an integrative review of the evolution of operational
tra=formation techniques, with the go~ of identifying the
major is-m~s, dgotiths, achievements, and remaining M-
lenges. In addition, this paper contribut= a new optimized
generic operational transformation control algorithm.

Ke~vords
Consistency maint enauce, operational transformation, con-
vergence, CauS*ty pras~ation, intention pre~tion,
group e&tors, groupware, distributed computing.

I~RODUCTION

Re~-time group edt ora ~ow a group of users to view and
edit the same te~t/graphic/image/mtitime&a document at
the same time horn geographicdy dispersed sit= connected
by communication networks. These types of groupware sy~
terns are not ody very msti took in the are of CSCW [5],
but. ~so serve &yceHentvebides for explotig a range of fun-
datnentd and ch~enging issues facing the design- of rd-
time groupware systems in gen~ One su& issue is conais
tency maintenance of shared documents under the constraints
of short response time, and support for free and concurrent
editing in distributed environments [17].

Research on rd-tirne group editors in the past decade
h~~ invented an innovative technique for consistency mainte
nance, under the name of operational transformation, which
was pioneered by the GROVE (GRoup Outtie Viewing Ed-
itor) system in 19S9 13]. Since then, sevd r=earch groups
have independently extended the operational transformation
technique in their design and implementation of these typ~
of systems. hlajor repr=entatives in this area include the

Permissiontomakedi~talorhardcopiesof allorpartofthis workfor
personalor classroomuseis granti withoutf= providedthatcopies
arenotmadeordis~%utedforprofitorcommercialad%atageandthat
copiesbeartis noticeandthefill citationonthefmt page To copy
othmvisatorepublish,topostonserversortoredistributeto~its,
requires@or aptific permissionandfora f=
CSC\V98 Satie JVmhingtonUSA
Copjfi~t AChl 199S1-5S1134094/9S/1 1.-$5.00

59

University of Colorado
Botider, CO 80309-0430, USA

skip@colorado.edu
http://www.-.coloraeduestipsHomeHhtd.htd

REDUCE (REd-time Distributed Unconstrained Coopera-
tive Editing) system [14, 15, 16, 17], the Jupiter system [11],
and the adOPTed algorithm [13]. This paper win present an
integrative review of the evolution of operational transforma-
tion techniques, with the go~ of identifying the major issues,
algorithms, achievements, and remaining cbdenges. In ad-
dition, this paper W contribute a new optimized generic
operational transformation control dgorith. This paper
@ focus exclusively on transformation-b=ed consistency
maintenance dgoriths. For discussion of alternative con-
sistency maintenance techniques, such as turn-taking, Iock-
ing, seri~zation, and transactions, the reader is refereed
to [5, 7, 8, 10, 17].

The rest of this paper is organized as fo~ow= First, some
basic concepts and terminologies are introduced. Then, the
operational transformation algorithm in the GROVE system
is reviewed to see where the original work was started and
what problems were left unsolved. Next, the problems with
the original GROVE transformation algorithm are analyzed,
and three different approaches to solving them are discussed
one by one, including the REDUCE approach, the Jupiter
approach, and the adOPTed approach. Furthermore, a new
optimized generic operational transformation control dg~
rithm is proposed. FinMy, the paper is concluded with a
summary of the major achievements so far and remaining
chdeng- for future research.

PREL~INARIES

h this section, some basic concepts and terminologies are in-
troduced. FoUowing Laruport [9], we defie a causal (partial)
ordering rdation on operations in terms of their generation
and execution sequent- as fotiows.

Definition 1: Cawd ordering relation “+”
~Iven two operations O= and Ob, generated at sites i and
~, then O= + Ob, ifi (1) i = j and the generation of 0=
happened bejore the generation of Ob, or (2) i # ~ and the
execution of O. at site j happened before the generation of
Ob, or (3) there exists an operation 0=, such that 0. + O=
and 0= + Ob. ❑

Definition 2: Dependent and independent operations
Given any two operations 0. and Ob. (1) ob is dependent
on Oa iff Oa + Ob. (2) 0~ and ob are independent (or con-
current), expressed as O=]] Ob, iff neither Oa + Ob, nor
ob + 0=. Q

To ~ustrate, consider a red-time group editing session
with three sites, as shown in the tim~space graph of Figure 1.

— —-— ,. __ ,:.>._. .

time

1

site O site 1 site 2 —..L- L2___ c—–l . 3?.:—— —-–-.1 .- -.. -..1., -. ,- , , n- ,

I I muLdLIve, lm~ emLmg rmuLs woma no~ De laen~lcm among

04

Fig. 1. A scenario of a rd-time group editing session.

There are four editing operations in this scenario: operation
01 generated at site O, operations 02 and 03 generated at
site 1, and operation 04 generated at site 2. It is ~ea
in this scenario that an operation is executed immediatdy at
the local site, then propagate to remote sites ana executed
there upon their mrid. The arrows in the graph represent
the propagation of operations from the lod tite to remote
sitti~. Each ~erticd he in the graph represents the activities
performed by the corresponding site. At site 1, for a~ample,
02 is executed first, fouowea by 01, 03, ana 04.

According to Definitions 1 ana 2, there are three pairs of
depmdent op-ations in this scenarim 01 + 03, 02 + 03,
ad 02 + 04 because the execution of 01 happens before
the generation of 03, the generation of 02 happens before
the generation of 03, ana the execution of 02 happens be
fore the generation of 04. Moreover, there are three pairs of
independent operations in this scenario: 01 II02, 01 1[04,
ana 03 II04 because for any pair, neither operation’s ~xe
cation happens before the other operation’s generation. As
wi~ be seen in the fo~owing discussion, sevd fnnaamentd
inconsistency problems are embedaea in this scenario. More
over, the seemingly Ample independence r~tionsbip among
operations in this scenario is actufly quite intricate, and h=
given significant technid &#enges to the aesign of correct
operational transformation algorithms [17].

THE GROVE APPROACH
To atieve good responsiveness ana avoid a sin~epoint of
failure in the system, a rephcatea architecture & been
adoptea by GRO~. the shined documents are rephcatea at
the local storage of each participat-mg site. An (upaate) oper-
ation is cxecut ed on the lod rephca of the sharea aocument
immediatdy after its generation, then broaamst to remote
sitas for esecution (after some aday ~a transformation).

Divergence and caus~ty-tiolation probIems

Suppose remote operations are execntea upon their arrid
ana in their otiginal fore, two inconsistency problems which
may occur in a concurrent editing session have been iaentfiea
in GROVE one is divergence, ana the other is causAty-
violation-

For eYample, consider the scenario shown in Fig- 1. The
four operations arrive ma are ~secntea in the fo~owing or-
dm 01,02, 04,ana 03 at site ~ 02, 01, 03,ana 04 at site
~ ma 02, 04, 03, ma 01 at site 2. K operations are not com-

60

cooperating sites. This problem is cflea divergence. Clearl~
the divergence problem shotia be prohibited for applications
where the cotist ency of the fid resdts is requires.

Moreover, since each cooperating site generates and broad-
casts operations without synchronization, operations may ar-
rive ana be executes in an oraer different from their natural
causal oraer. As shown in Fig. 1, operation 03 is generated
after the arrival of 01 at site 1, so 03 + 01. However, since
03 arrives before 01 at site 2, the execution of 03 before 01
may resdt in an unaefied operation 03, which refers to a
nonexistent context to be createa by 01, or a confused user
at site 2, who observes the efiect in 03 before observing the
cause in 01. This problem is cflea causalitu-violation. Out
of caus~ order execution shotia be prohibited for appfica-

$

tions where a synchronized interaction among mtitiple users
is requires.

Consistency correctness criteria e
B=ed on the iaenttication of the two inconsistency problems,
the GROVE consistency correctness criteria were defined by
the fo~owing two properties:

.,

1. Convergence property copies of the sharea docu-
ment are iaenticd at d sites at quiescence (i.e., M gen-
erated operations have been executes at fl sites).

2. Precedence property: if one operations 0. causdy
preceaes another operation Ob, then at each site the
execution of O= happens before the execution of Ob.

In search of a solution where the ody constraint on execu-
tion order is the causal oraering among operations, GROVE
inventea the late we~-bown distributed Operation Trans-
formation (aOPT) algorithm. GROVE’s solution consists
of two components: one is the statevector timestamping
scheme for ensuring the precedence property, and the other
is the aOPT algorithm for ensuring the convergence prop ..

erty. The basic idea of the dOPT algorithm is that when
an operation satisfies the precedence condition for execution,
it is transformed against independent operations in the Log
(which saves d executes operations in the order of their ex-
ecution) in such a way that executions of the same set of
properly transformed inaepenaent operations in different or-
ders produce identicd aocument states, thus ensuring the
convergence property.

,

A transformation property
To ensure convergence, the dOPT algorithm requires the
transformation function T to satisfy the fo~owing conditiow.
For any two independent operations O. and Ob, suppose that
O:= T(O=, Oh), ana O:= ~(ob, 0.), it must be that

Oaoo;=oboo;

where “-m ma the two sequences of operations Oc o Oj ,.,
ana ob 00: are quiualent in the sense that when appfied
on the same input document state they produce the same
output document state.

h addition to the above formfly specifies condition,
GROVE &o recognized there were some circumstances, in
which the transformation function shotid achieve an effect
which is non-serializable. For example, suppose 0. ana ob
are two independent (character-wise) delete operations re-
fetig to the same position, then T must ensure ody one
character is eventdy deleted no matter in which order O. ,

I
,

— . .-,

.—— ——— —
....

-—-. -- ,,-.:.”:.- _

ad ob are &secute& This non-seri=zable ~ect is, however,
not captured by the above formal condition for T.

A sketch of the dOPT dgoritb
The transformation function T r&es on the semantics of the
editing operations and hence is application-dependent. The
dOPT algorithm, however, is gentic and takes care of sdect-
ing operations for transformation and determiningg the t~
formation order. The basic control structure of the dOPT
dgontti is simple: Given a causdy ready operation O, the
dOPT ~gonthm s- the Log to transform O against any
operation in the Log which is independent of @ then the
transformed O, denoted as EO G-e., the execution form of
0), is e~ecuted and saved in the Log. The dOPT algorithm
is sketched bdow.

dOPT(0 , Log) {
EO = 0;
for (i = 1; i <= n; i+) {

if (Logri] I ! O)
then EO = T (EO, Log [i]);

1
Execute EO;
Append EO at the end of the Log;

1
J

An usol~~ed dOPT pwzle
In [3] (Fig. 4 in Section 6 Discussion of Comectness), one
scentio was identified, where the dOPT algorithm cotid not
ensure convergence This scenaciol is redisplayed in Fig. Z.

time
site3 site 1 site2

~]g. ~. The mixed priori~ --~ple, in IThich the dOPT algorithm

failed to insure conv~gmce.

Suppose the GROVE transformation tiction uses the
foUo\&g ptiotity nl= when two insert operations have
the same position parameter, the position of the operation
~vith a lower priority [i.a, smfler site identier) ~ be
shifted2. According to the gentic dOPT algorithm and the
application-dependent transformation fiction in [3], the op
eration transformation and the ~ document states at the
three sites are as fo~ows (assuree the initial document is
empty).

llmfact,the scenariosinFag.2 cm be obttined by remoting 02 from tbe

scen&o iHustrated in Fig. 1.

21t should be noted that the priority rule is actudy oppotite to tbe one

used in the definition of tr=sfomation fundon Tll in [3].TKM chuge

ISnecessaryto corredy finfiratethe problem tbe GROVE designers redy

intended to Wustrate.

61

At site 3, 03 first inserts “z” into the document3. men
01 arrives, it inserts “x” in front of “z” to get a document
with ‘XZ” . Finfly, when 02 arrives, since 02 II 03 and
02 II 01, it is fit transformed against 03 and becomes
O; = Insert[y, 2] due to its lower priority than 03; then
it is transformed against 01 and becomes O! = Insert[y, 3].
After the execution of O;, the document contains “xzy”4.
At site 1, the process of operation transformation and the
ti restit are the same as that at site 3. At site 2, 02 fist
inserts “y* into the document. men 03 arrives, it has to
be transformed against 02 since 03 II02, but no change has
been made to 03 due to its higher priority than 02. After
the execution of 03, the document contains “zy”. Findy,
when 01 arrives, it has to be transformed against 02 since
01 II02. The transformation of 01 against 02 ~fl produce
0{ = Insert[z, 2] due to its lower priority than 02. O; does
not need to be transformed against 03 since 03 + 01. After
the execution of O;, the document contains “zxy”, which is
not identid to “xzy” at sites 3 and 1.

The problem frustrated in Fig. 2 is fundamental to the
correctness of operational transformation approach. As cor-
rectly pointed out in [3], this problem cotid not be &ed by
simply reversing the priority tie, since this pat ch works in
this case but f~ in other rather similar cases. In search of a
correct solution to this problem, the simple-minded priority
scheme (using a sin~e site identfier) was thought to be root
of the problem, thus a sophisticated (and complicated) prio-
rityscheme (using a fist of site identifiers) w= proposed in [3].
This new priority scheme did not prove to be success~ in
solving the problem, thus leaving one unsolved puzzle to the
groupware research community.

The innovative idea of maintaining consistency by opera-
tional transformation, as we~ as the unsolved dOPT puzzle,
has been a major inspiration and stimtiation to a number
of r~earch groups in the area of red-time groupware sy~
terns. k fact, several research groups [1, 11, 13, 17], have
independently rediscovered that the dOPT algorithm did
not work whenever an operation is concurrent with two or
more dependent operations, and different approaches have
been proposed to& it. In the fo~owing sections, three alte-
rnativeapproaches ~d be discussed, including the REDUCE

aPProa~ [14} 15, 17] ~g m l-dimensional data structure
for keeping track of executed operations, the Jupiter ap
preach [11] using a 2-dimensional data structure for main-
taining executed operations, and the adOPTed approach [13] ● “

using a N-dimensional data structure (where N is number ,“
of cooperating sites in the system) for maintaining executed
operations.

THE REDUCE APPROACH

REDUCE fo~ows GROVE in adopting a tiy distributed and
rephated system architecture. A finear History Bufier (HB),
which is the same as the Log in GROVE, is used to keep track
of d executed operations. In addition, a garbage coUection
scheme was devised to remove useless operations from the
HE [17].

3h this paper, the sequence of characters in a text document are referred

to (or addressed) from 1 to the end of the document. :,

41t sbonld be pointed out that this result is {Ifferent from \vhat VJ- pre.

sented in [3]. I

,

i’
I

.. —

—-—.-——— —— -. -,.,<______

The intention-violation problem

Apart from divergence and caus~ty-violation problems, one
special tid of inconsistency problem — intention-uiolation –
has been identtied in ~DUCE [14].

To Nwstrate, consider the two independent operations 01
and 02 in the scentio shown in Fig. 1. At site O, 02 is
~secuted on a docummt state which has been changed by
the preceding execution of 01. Therefore, the subsequent
execution of 02 may refer to an incorrect petition in the new
document state, and rdt in an editing &ect Merent horn
the 02’s intention, which is defined as the editing effect which
codd be a~eved by applying 02 on the document state from
which 02 w= generated [14].

For a~mple, a~e the shared document initidy con-
t&s the fo~owing sequence of charact- “ABCDE”. SUP
pose 0~ = 1nsert~12”, 2], which intends to &ert string
“12V at. position 2, i.e., between “A” and %CDE”; and
02 = Delete[2, ~], whi& intends to ddete the two charac-
ters st.~ing from position 3, i.e., “CD”- After the execution
of these two operations, the intention-preseroedr~t (at d
sit~~) shotid bc ‘A12BE”. However, the actua r~t at Ste
0, obtained by e~ecuting 01 fouowed by executing 02, wotid
be: “AICDE”, whi& dearly violates the intention of 01 since
the ch-aracta ‘2”, which was intended to be inserted, is mis~
ing in the fid te~t, and rdso violat a the intention of 02 since
chmacters “CD”, which were intended to be ddeted, are stN
prasent in the fid text. A seri~ation protocol might be
used to ensure that a sites a~ecute 01 and 02 in the same
order to get = identicrd rdt “AICDE”, but this identicd
rdt iss~ inconsistent with the intentions of both 01 and
02.

It is important to recognize that intention viohtion is an
inconsistmcy problem of a different nature from the diver-
gence problem. The essential Herence between divergence
and intention violation is that the former can always be r~
solved by a seri~tion protocol, but the btter ~ot be
&yed by any seri&zation protocol if operations were always
~secuted in their ongind forms.

A consistency model

Due to the distinction of the intention-violation problem from
the divergence problem, one additiod consistency correct-
ness crittia - intention-preservation – was proposed in =
DUCE [14]. The REDUCE comectness titeria for co-
tency maintenance has been d~ed in the form of a consi-
tency modd =%fo~ows.

Definition 3: A consistency modd
A coopwative editing system is consistent if it always main-
t.hs the fouowing properti~

1. Con\’ergence: when the same set of operations have
be= executed at d sites, d copies of the shared docu-
ment are identid.

2. Causfllty-pr=ertition: for any pair of operations
O. and Ob. if O. + Ob, then O. is executed before ob
at. ~ sites.

3. Intention-preservation: for any operation 0, the ef-
fects of ~xecuting O at ~ sit= are the same as the
intation of 0, and the &ect of executing O does not
&ange the effects of independent operations.

❑

To support the three properties of the consistency
modd, REDUCE adopted the same stat&vector timestamp
ing scheme as that in GROVE for achieving caustity-
pr~ervation (or precedence in GROVE’s terminology). With
the distinction of intention-preservation from convergence,
two separate schemes were devised for supporting these two
different propdi~ an undo/do/redo scheme for achieving
convergence, and an operational transformation dgonthm for I

achieving intention-preservation. ~

To achieve convergence, a total ordering relationship “+” ~
among operations is defined [141. However, operations are ~-
Iowed-to-be executed in any ~r~er as long & ~heir causdty is
praerved. When anew operation O is causfly-ready for ex-
ecution, (1) undo operations in the HB which totdy follow
O to restore the document to the state before their execu-
tio~ (2) do O; and fifly (3) redo fl operatiom that were
undone from the HB. It shotid be noted that the undo/redo
operations involved in this scheme are internal operations,
rather than eztemal operations initiated from the user in-
terface [12]. Therefore, the undo/do/redo scheme shodd be
implemented in such a way that ody the fid restit (in-
st-d of the intermediate ones) produced at the end of the
undo/do/redo process is reflected on the user interface.

Transformation pre/post-con<ions

Since transformation functions in REDUCE are not responsi-
ble for ensuring convergence, they are not required to satisfy
the same condition as in GROVE. In REDUCE, when oper-
ation O. is transformed against operation Ob, it is required
that the effect of the transformed operation O: on the doc-
ument state that contains the imDact of Ob shodd be the
same as the &ect of O= on the document state that does
not contain the impact of Ob. This type of transformation
is ded Inclusion Transformation (IT),. since it transforms
an operation 0~ agtit another operation ob in such a way
that the impact of ob is effectively included. The GROVE
transformation functions can be ~egarded as a tind of in-
clusion transformation. Most importantly, it was recognized
that the correctness of this inclusion transformation rehes on
the condition that both O- and Oh are defied on the same
document state [17], so the~wparameters are comparable and
- be used to derive a proper adjustment to O.. Faikg
to recognize and to ensure this condition is the root of the
unsolved dOPT puzzle.

In search of a correct and sophisticated solution to
intention-pr-ervation, ~DUCE introduced another type of
transformation, ded Exclusion Transformation (ET), which
transforms O. ag~t another operation ob b such a way
that the impact of ob is effectively excluded from Oa [17].
For example, 04 and 01 are independent operations but gen-
erated from different documents states, as shown in Fig. 1.
When 04 arrives at site O, it is incorrect to simply transform
04 against 01. Instead, exclusion transformation shotid be
appfied on 04 against its causdy preceding operation 02 to
Produce O; in such a way that 02’s imvact on 04 is excluded.
fionsequen~ly, Oj effectively shares th~ same do&ent state
with 01, and then can be apphed with the inclusion tr~
formation against 01.

To capt~e the required relationship between operations
for correct transformation. the notion of oDeration context is
introduced. The context of a document state is the sequence
of operations executed on the initial document state to ar-

●
✎✎

62

— -.—

—.— ——_ _._. --~ - —:-.L ~, -;

rive at the ment document state. Given an operation O,
the definition cont=t of O, denoted as DC(0), is the con-
text of the document state on whi& O is d&e& and the
~uufion mntat of O, denoted as EC(O), is the cent ex%of
the doment state on whid O is to be executed. The inten-
tion of an operation ~ be pr=erved if its dtition context
mat&es its execution context, i.e., DC(O) = EC(O).

~DUCE u~es two ptitive t~ormation functions –
JT(Oa, ~b) and ET(O=, Ob) – to m~e an operation’s dti-
tion cont~~t eqtivdent to its execution context. For spe@-
ing pre/post-conditions of the transformation fnnctions, two
cont~~?-based r&tions are dehed bdow (Note a context is
~~~r~ed as an operation Ust in the rest of the paper).

Definition ~: Context equi~dent rdation u U “
~lven two operatiom< 0= and Ob, 0. and ob are wnt~t-
epiz!5!ent, i.e., O= U Ob, i#DC(Oa) = Dc(Ob). ❑

De$nition 5: Context preceding rdation “*”
~I\,en two operations 0. and Ob, Oa is wntmtprweding Ob,
i.e., O. * Ob, ifi Dc(ob) = DC(O=) + [0=] (where “+”
a\Tressm the con~tenation of two kts). ❑

l~th the cont~x~-based r~tions, the pre/pos&conditions
of the two trusformation functions are spe~ed as fo~ows.

spE~$C5~~On1: IT(O., Ob): ok
1. Precondition for ~put p~~et~ o. U Ob.
2. Postcondition for outputi ob ~ O:, and the effect of

O: in DC(O~) is the same as the ~ect of 0= in DC(O=).
u

S~&C~fiWf~On 2: ET(O., Ob): o;

~. Precondition for ~put p~et~ ob ~ 0..
2. Postcondition for outpuk ob U O:, and the ~ect of O;

in DC(O~) is the same as the effect of 0= in DC(O=).
❑

The dc4gn of a pair of ITj~ functions for s~-wise
operations, which satisfy the waed post-conditions, ~
be found in [161 17].

The GOT control dgoritb

To ensure tra~formation preconditions a Generic Opera-
tional Tr-sformation (GOT) control ~gorithrn b been de
~ised [17]. Ttig a ~dy-ready operation O and its exem-
tion conta~t EC(O) (i.e., the current contents of the ~) as
input parameters, the GOT control ~gorithm uses the IT/ET
fictions to transform O into EO (the exemtion form of O)
such that DC(EO] = EC(0).

Three ~ses have been distinguished and handed dif-
ferently in the GOT control dgonthm, as frustrated in
Fig. 3. In ttis example, we assmne EC(0) = HB =
[EOI, EOZ, EOS].

Case I : M operations in EC(O) are -us&y preceding
O. It must be that DC(O)= EC(0), so thatEO = O
(no tra~formation is performed).

C5se 2: Operations causdy preceding O are kted in
EC(0) before operations independent of O. Since
EO1 ~ O, E02 II O, and E03 II O, by -orming
O against EU2 and EOZ in sequence, we get EO su&
that DC(EO) = EC(O)-

lnput%
0: a causally-raadyoparation
0’s execution context: E~O) =[EO1,E02, E031

OutpuL Us exacutionform EO

&se 1. EO1->0, E02->0, E03->0

DC(0) = [ EO1, E02, E03 ]

r
EC(0) = [ EO1, E02, E03 ] EO

Case 2. EO1->0, E02 IIO, E03 IIO

D~O) = [ EO1] Or
E~O) = [ EO1, E 2, E03 ] EOIrlt

tise 3. EO1->0, E02 IIO, E03 ->0

o’ PD~O) = [ EOI, E03’ ] O

bhE~O) = [EO1, E 2, 03] o

n

Fig. 3. Thr& c== mdysk and hmdhng by the GOT controldg~
ntb

Case 3: At l-t one caus~y-preceding operation is posi-
tioned after an independent operation in EC(O). This
is the -e that the dOPT algorithm ftied to hande
correctly. Since EO1 ~ O, E02 1]O, and E03 ~ O, it
must be that DC(0) = [EO1, EOj], where EOj is the
original form of E03 when O w= generated. Transform-
ing O directly against any operation in EO(0) wodd vi-
olate the preconditions for IT/ET tictions. The strat-
egy t~en by the GOT dgonthm is as fo~ows: (1) ap
ply exclusion transformation on E03 against E02 (both
E03 and E02 are av~ble in EO(0)) to obtain EO~,
(2) apply exclusion transformation on O agaimt EO$ to
get an intermediate O’; and tindy (3) apply inclusion
transformation on O’ against E02 and E03 in sequence,
we get EO sud that DC(EO) = EC(0).

To describe the GOT dgoritk, a few notations need
to be introduced Given a fist of operations L, L[i, j~ de
notes a subkt of L containing the operations from EOi
to EOj inclusively; and L–l denotes the reverse of L.
LIT(O, L)/L~(O, L) is used to denote the apphcation of
ITj~ function on operation O against a fist of operations
in L in sequence from left to right.

Algorithm 1: GOT(O, L): EO

O. a aus~y-ready operation
L: the fist of operations [EO1, E02, .... EO~] in EC(0).

63
I

!
I

*

—



EO: the csecution form of O.
1. Scan L[l, m] from left to tight to tid the first operation

EOk such that EOk 1[ O. If no such an operation is
found, then return EO := O.

2. Othatise, scan L[k + 1, m] to&d operations may
preceding O. If no tigle su& operation is found, then
return EO := LIT(O, L[k, m]).

3. Otherwise, let L1 = [EO.,, .-., EOC.] be the bt of OP
erations in L[k, m] which are causdy preceding O.

(a) Get. L!= [EO~l, .... EO~p] as fo~ows:
i. EO~l := LET(EOC, , L[k, C, – 1]-1 ).
ii. For2<i <r,

O*:= LET(EOC, , L[k, G – l]-’);
EO~, := LIT(O*, [EO~, ,..., EO~_l]).

@) O’:= LET(O, L;-’).
(c) return EO := LIT(O’,L[k,m])-

❑

It. can be shown that the preconditions required by the
transformation functions are ~ways guaranteed by the GOT
control ~gorithm. Therefore, if the poskconditions are
always ensured by the tra<formation functions, then the
GOT control dgonthm @ tmform O into EO, so that
the execution of EO on EC(O) ~ preserve the inten-
tion or O. To atieves both intention-preservation and con-
vergence, the GOT control ~gorith has been integrated
with the nndo/do/redo scheme to form an undo/transform-
do/tra~form-redo s&eme [17].

A solution to the dOPT puzzle

In this section, me show how REDUCE SOIV=the dOPT p-
zle. lT’e a<sume, without losing gen~ty, the total oral-g
rdationship ‘~” among the three operations in Fig. 2 ix
03 ~ 01 ~ 02. Mso, we ~sume the the REDUCE transfor-
mation hction IT(Oa, Ob) uses the fo~owing shifiing rule
if both O. and Ob are ti~ertiom and have the same petition
pm=eter, the position of O. ~ be shifted. This shifting
de is consistent with the priority tie used in GROVE.

Under REDUCE, the operation trdormation =d the fi-
nd document states (i.e., %y”) at tites 3 and 1 are the
same m they are under GROVE. The situation at site 2,
however, is ~erent: 02 &t inserts ~“ into the document.
Next, when 03 tives, 02 has to be undone since 03 ~ 02.
Then 03 is executed as is, and 02 is indusivdy tmformed
ag&st 03 (according to 03 II 02 and Case 2 in the GOT
dgonthm) to become O: = lnsert[g, 2] according to the
shifting tie. Mter the e~ecntion of both 03 and O;, the
document contaias ‘zy”. Findy, when 01 tives, O; has
to be undone shce 01 ~ O;. Then 01 is executed as is
(since 03 ~ 01)1 and O; is indusivdy transformed against
01 (according to 02 ]] 01 and Case 2 in the GOT function)
to become 0$= Insert[y, 3]. fiter the execution of O;, the
document. contains %y”, which is identid to the document
stat e at. sites 3 and 1, and the intentions of ~ three opera-
tions are pr~served. k this partih example, the exclusion
tr-sfomation is not used, but in more complex scenarios,
.w& a~ the one shown in Fig. 1, ~sdusion transformation is
needed (see [17]).

THE JUPITER APPROACH

The Jupiter co~aboration system was devdoped at Xerox
P~C 111]. Since Jupiter has &eady had a central server
for maintaining the states of objects (e.g., ~~t~board, text

documents, etc.) in the shared persistent virtual world, it is
natnrd to use this central server for supporting consistency
maintenance of shared objects as we~. The Jupiter consis-
tency maintenance algorithm was derived from the dOPT d-
gonthm. The most interesting part of the Jupiter approach
is the adaptation of the dOPT optimistic dgonthm to an
environment with mtitiple replicated chents sites plus one
centrtized server site.

h Jupiter, the shared documents are replicated at ti c~
operating dent sites, which is the same as in GROVE. The
difference is that the shared documents are dso maintained
at the central server and communications happen ody be
tween a fient and the server fi.e., a 2-wav communication).
men an updating operation ii generated it a c~ent site, it is
immediately executed at the loc~ chent site (for fast response
to user actions), and then propagated to the central server.
The server fit transforms the incoming operation if nece~
sary, then executes the transformed operation on its copy of
the shared document, and finfly broadcasts the transformed
operation to d other cfient sites. Upon receiving an oper-
ation propagated horn the central server, a cfient site may
transform this operation if necessary, and then executes it on
the Iod copy of the document. This sta-~e topology of
communication ~minates the concern for ensuring causfity
(i.e., caustity-violation never occurs). It &o substantidy
simp~es the operatioti transformation control algorithm.

To achieve convergence, the Jupiter transformation func-
tion is required to satisfy the same property as that re
@ed by the dOPT dgoritb. However, Jupiter uses a 2-
dimensiond state space graph, instead of a hear Log/HB,
to keep track of fl possible operation transformation ‘paths
to guide the selection of right operations for transformation.
The Jupiter dgonthm ensures that any pair of operations
involved in a transformation must have originated from the
same starting state in the state space graph, which is es-
sentifly the same as ensuring the contezt equivalent pre-
condition by the GOT algorithm in the REDUCE approach.
Therefore, the Jupiter algorithm is able to correct the dOPT
algorithm under the condition that ody >way communica-
tions are dewed in the system. h alternative approach to
correcting the dOPT algorithm for the >way communication
special case can be found in [1].

THE ADOPTED APPROACH

The adOPTed algorithm adopted the same correctness cri-
teria from GROVE for consistency maintenance conver-
gence and precedence ~.e., causfity-preservation). It &o
fo~owed GROVE in using a tiy distributed and rephcated
architecture. mat is different in the adOPTed dgonthm
is that it requires an additiond property for transformation
bctions to satisfi. ~lven two operations O= and Ob, let

1

0: = T(O=, Oh), and O; = T(Ob, Oa), the transformation
function T is required to possess the fo~owing two proper- 1
ties:

Transformation Property 1 (TPI) :

Transformation Property 2 (TP2) : For any O,
I

T(T(O, O.), Oj) = T(T(O, Oh), O:) ,

!

I



—. -— ———— ,-- Y:; ,-..
. . . . . .. .

TP1 is the same as that required by the dOPT ~orithm
and the Jupiter dgonthzn, but TP2 is new in the adOPTed
algorithm. TP2 ensures that the transformation of opera-
tion O along different paths @ yidd the same r~ting op
eratiom The~e two properties can be Wustrated by using a
directed graph, cded interaction moael [13], as shown in Fig-
ure 4.

S2

Ob

so

Oa’=T(Oa,Ob)--------------
T=
I
t
I
1
I Ob’=T(Ob,Oa)
I
I
1

.
Oa S1

(a)Trensfonnationprope@ 1:: Oao Ob’ ~ Obo Oa’

I . . 1
1

‘.
-.

1 \ T(T(O, ~b), Oa’j=3<~(0,0a), Ob9
I T(O,~bJ\> 1
1 1 .

Oa I

(b)Tmnsformationprope~ 2 T(T(O,Oa),OW)=T(T(O,Ob),Oa’)

Fig. 4. hteraction mod~ illwtration of t~fomation proptii~.

The vertices of the interaction modd graph are labded
by document states, and the edges are bbded by opera-
tions. For example, the four vertic~ of the square in Fig-
ure 4(a) are labded by four document stat= SO, S1, S2,
and S3, raspectivd~ the two sofid edges are Iabded by two
Original operations: Oa and 05, respectivd~ and the other
~o d~<hed edges are labded by two transformed operatio~
O; = T(Oa, Oh), and O: = T(Ob, 0=), respectivdy. Essen-
titiy, TPI ensures the unique vertic= lab&g, where TP2
ensures the ursiWe edge labtig in the interaction modd
graph. It has been shown in [13] that TP1 and TP2 are the
necessary and sticient conditions for ~g convergence
in systems which Now N-way communication (where N is
the number of cooperating sites).

The adOPTed ~gonthm used au N-dimensioti interac-
tion modd graph to keeps tra& of d ~dd paths of opera-
tion transformations. The N-dimensiond interaction modd
graph can be viewed as a gener~zation of the Q-dimensiond
state space in the Jupiter ~orithm, and it *O plays the
same role in guiding the sdection of the right path and right
operations for transformation. The adOPTed algorithm en-

sures that any pair of operations involved in a transformation
are defined on the same document state.

Patities bysite3and1

\

02’’=Ins&,3] ~w Patitien bysite2
--------------

4
1

01’=fns[x,l;

Ol=h[x ,1] 1
I
1I
1

02’=Ins~,2]]
.-------------$kv
\ =. (

Fig. 5. The adOPTed solution to the dOPT puzzle

Using the adOPTed algorithm and the same transforma-
tion function Tll from GROVE, the solution to the dOPT
puzzle can be Muetrated in Figure 5. At sites 3 and 1, the
operation transformation and execution fo~ow the same path
03 and 01 are executed as is, but 02 is transformed against
03 and 01 in sequence, resdting in O: = Ins[y, 2], then
O; = Ins[y, 3] (In the meantime, the adOPTed algorithm
&o produc= O: = Ins[z, 1], and 0{ = Ins[x, 1], which are
of no use at sites 3 and 1). The execution of 03, 01, and O;
in sequence resdts in the fid document state “xzy%. At site
2, a ~erent path in the interaction model graph is tden.
First, 02 is executed as is. When Os arrives, it is trans-
formed against 02 to become O: = Ins[z, 1]. MeanwMe, the
adOPTed dgonthnt *O transforms 02 against 03 to pr~
duce O! = Ins[g, 2], and both O: and O: are maintained
at proper positions in the interaction model graph. When
01 arrives, the adOPTed algorithm searches the interaction
model graph to fid the right operation O; (instead of 02,
which was used in the dOPT algorithm) for transformation
to get O; = Ins[z, 1].In the meantime, the adOPTed dg~
rithzn *O produces and maintains O; = lns[y, 3] at site 2
(OJ is of no use in this example). The execution of 02, 0:,
and 0[ in sequence restits in an identicd document state
UXzy”.

AN OPTIMIZED ALGORITHM: GOTO
Without requiring TP1 and TP2, the GOT control algorithm,
integrated with the undo/do/redo scheme [17], is the ordy
hewn solution for achieving both intention-preservation and
convergence. An interesting question is: what codd the GOT
~gorithrn achieve if TP1 and TP2 are satisfied by IT/ET
functions? In this section, we }fl answer this question and
propose a new optimized GOT control algorithm.

To t~e advantage of the two additiond post-conditions
TP1 and TP2, we modify the ongind context-based rela-
tions in Defiuitiona 4 and 5 as fo~ows: replace the equal sign
‘=” with the equisralencesign “~”. Obviously, the equa r~
Iation “=” between operation contexts is a special case of the
equivalence relation “-”. With this generdzation of context-
based relations and the extension of pr~/post-conditions for
IT/ET functions, we found that the original GOT control
~gorithm can ensure both intention-preservation and con-
vergence, without integrating with the undo/do/redo scheme

I

65

-. —



-. —. .-—— _:,-,>.+...-——.—

or using a mtiti-dimensiond graph The vtication of this
claim can fo~ow sidar reasonings as used in [13], which is,
however, beyond the scope of this paper.

hforeov~, the two additiond post-conditions TP1 and
TP2 can be employed to optimize the GOT control dgonthm
by reducing the number of IT/ET transformations. The OP
timized dgonthm, named as GOTO (GOT Optimized), re
sembles the Original GOT algorithm in hanfig the fit and
the second =ses (see Fig. 3). For the third case, the han&g
is ~erent.. In addition to performing transformations on the
d~tion cont~x% of 0, we &o perform transformations on
the execution conta~t. of O to m~e the two contexts equiv-
alent.. This - be aaeved by executing the fo~owing two
steps

1. Transform execution conte>%EC(O) into such an equiv-
alent EC(O)’ that d operations caus~y preceding
O are positioned before independent operations in
EC(O)’. Let EC(O)’ = EC(0) ’.left + EC(0)’.right,
where EC(0) ’.?e~t is the sub~st of cady preceding
operatiom~, and EC(0) ’.right is the subhst of indepen-
dent operations.

2. Apply the inclusion transformation on O against
the fist of independent operations in EC(0) ’.right.
The tra~formation precondition is sati=ed because
EC(0)’.lefts DC(O).

The question now i= how to transform EC(O) into such
an equi~dent EC(O)’?

By using IT and ET tictions, the Transpose function is
d~ed to tr=~form and swap two operations in an execu-
tion cont~x?.

Function 1: Transpos(Oa, Ob) : O!, O:

{
O;:= ~(ob, Oa);
0::= lT(Oa, 0:);
return (0[,, O:);

3

The precondition for O= and ob i= O. H Ob. The
post-condition for Ok and Oj is: O; * O:. Based on
the Tr=~pose function, function LTranspose(L) is d&ed,
w~bichtra~forms and cirdarly shifts the kt of operations
in L.

Proce&~re I: LTranspose(L)

{
for (i= ILI; i > 1; i- -)

(L[i - 1],L[~) := Transpose(L[i – l], L[~);

1

According to TP1 and TP2, and the dtition of Trans-
posq it mmst be that L G L1, where L’ is the &t of operations
~er c~g LTranspose(L).

As m example, the hanfig of case 3 by the GOTO dg~
tithm is shown in Fig. 6. ~ this example, we - transpose
E02 and E03 in EC(O) by &g Transpose(E02, E03),
so that an equident esecution context EC(0)’ =
[EOl,EO~, EO~] can be obtained. Then, since DC(0) G
[EO1, EO~], we - apply an indnsion transformation on O

Case 3. EO1->0,E021[ O, E03 ->0

EC(0) = [ EO1, E02, E03 ]

j

‘P ‘

------- ----
1

t 1

1
~Transpose

:
1 rr

1

1
1------- ---l

E~O) “ = [ EO1, EOY, E02’ ] EO

D~O) s [ EO1, E03’ ] &

Fig. 6. Thehandfingof mixedindependentanddependentoperations
by the GOTO controlalgorithm

against EO~ to get EO, such that DC(EO) = EC(0)’. To
transform O into EO in this example, three IT/ET transfor-
mations (one Transpose function costs one IT and one ET
t-formations) are needed under the GOTO control dg~
rithm, wher- four IT/ET transformations are needed under
the GOT control algorithm. . .

Algorithm 2: GOTO(O, L): EO
O. a causfly-ready operation
L the hst of operations [EOI, E02, .... EOm] in EC(0).
EO: the execution form of O.

1. Scan L[l, m] from left to right to find the first operation
EOk such that EOk II O. If no such an operation is
found, then return EO := O.

2. Otherwise, scan L[k + 1, m] to fid operations causfly
preceding O. If no sin~e such operation is found, then
return EO := LIT(O, L[k, m]).

3. Otherwise, let L1 = [EO.l, .... EOCr] be the fist of OF
erations in L[k, m] which are caustiy preceding O.

(a) Forl<i <r:
LTranspose(L[k + i – 1, ci]);

(b) return EO := LIT(O, L[k + r, m]).
❑

It can be shown that the preconditions required by ‘
the transformation functions are always guaranteed by the ~
GOTO control algorithm. Therefore, if the post-conditions,
including TP1 and TP2, are always ensured by the tran~
formation functions, then the GOTO control dgonthm wi~
transform O into EO, so that the execution of EO on EC(0)
d preserve the intention of O and ensure convergence.

CONCLUSIONS AND FUTURE DIRECTIONS

Lfany people have experiences of using various editors. Not
so many people have reco~zed that there wotid exist many
interestin~ reswch issues in an editor when used in a red--
time co~aborative context. Even less people have come to
learn that some research issues in red-time group editors,
such x consistency maintenance, wotid be so chflenging
that a demde exploration wotid not be enough to exhaust ~
their research potential. In this paper, we have reviewed a ~
number of major operational transformation dgonthrns for I
consistency maintenance in rd-time group editors, including :

66
I

— .— ___ !



..—— —“. ——

the dOPT ~gorithm, the GOT dgonthm, the Jupiter rdg~
nthm, and the adOPTed dgonthm, and ha}.e proposed anew
optimized transformation control ~gorith – the GOTO rd-
gorithm. h this concluding section, we summarize the major
achievements in the past decade on the transformation-based
consistency maintenance techniques and point out the major
open is.mes for &her e~loration.

hlajor achie~’ments

Three inconsistency problems - divergence, caw~&ty-
violation, and intention-violation – have been identfied and
explored. Partidarly, the non-sti~~ble intention tiola-
tion problem has been distinguished from the sti~ble
divergence problem Corresponding to these three prob
lems, consistency correctness titeria cotist of three prop
erti- convergence, caus~ty-presaation, and intention-
preservation. It is usti to integrate these three properti~
in a com<ist.encymodd, which effectivdy specifies what con-
sistency has been promised to the system users and what
properties must. be supported by the underlying system dgm
nthms.

The discovery of the nec=sary t-ormation pr~
conditions has been a si~cant step toward the design
of correct transformation control dgonthms. The notion
of operation cont~x~ is very usti in capt&g the r~
quired rdationship between operations for correct transfor-
mation. Nternative approa&es to ensuring transformation
preconditions include the GOT/GOTO control ~gorithms
m’orking on an l-dimensiond history btier, the Jupiter *G
rithm working on a 2-dimensioti state space graph, and the
adOPTed algorithm wor~ on a N-dimensiond interaction
modd graph.

Two types of transformation functions have been proposed
inclusion and a~d~<ion transformations. For dgotithms that
w<ea mtiti-fim~ond data structure to keep track of oper-
atiom< in their ori@dl intermediate, and executed fore,
such as the Jupiter and adOPTed algorithms, ordy incl-
usiontra~formation is neede& For algorithms that use an
l-dimemsionrd bist ory btier to save operations in their ex-
ecuted form ordy, such = the GOT and GOTO algorithms,
apart horn inclusion transformation, mdusion transforma-
tion is needed to recover operations’ ongind and intermedi-
ate forms from their e~ecuted forms.

The ident~cation of proper tr-
formation post-conditions has played a crucial role in the
desi~ of both the generic transformation control algorithms
and application dependent transformation functions. By r~
quiring cont~~t-b=ed post-conditions, the GOT control dg~
nthm can achieve intention-presmation. The context-based
post-condition<, however, do not capture the conditions for
=tig convergence so the GOT control rdgorithm must be
integrated with an undo/do/redo scheme to achieve conver-
gence. k essencq redo/redo can *O be tiewed as a kind
of trm~formation, which is performed directiy on the doc-
ument states rather than on the operations. By requiring
TPI ody, the Jupiter dgonthm can achieve convergence in
systems wE& are rc<tricted to >way conununicatiom By r~
qtig both TP1 and TP2, the adOPTed algorithm achiev~
convergence in systems which dow N-way comnnmication.
Ntither TP1 nor TP2, however, capturm the conditiom for
atig intention-pr=ervation, so intention-presmation has
bem implicitly handed by transformation functions in the

dOPT dgoritti, the Jupiter algorithm, and the adOPTed
~orithm. By requiring both TP1 and TP2, in addition
to the contexbb~ed post-conditions, the GOT control d-
algorithmdone is able to achieve both intention-preservation
and convergence. By performing transformations on both
dtition and execution contexts, the GOTO algorithm is
able to optimize the GOT algorithm by reducing the number
of transformations.

Open issues and fiture directions

The correctn=s of the whole operational transformation
scheme r&es on the satisfaction of both transformation pre-
conditions and post-conditions. Lots of work have been done
on the d=ign of correct generic transformation control d-
algorithmsto ensure transformation preconditions. However,
not much work has been done on the d=ign of apphcation-
dependent transformation functions which cotid redy ensure
transformation post-conditions [16]. We have learned that
TP1 and TP2 have to be satisfied by transformation functions
in order to ensure convergence, but we know httle about how
to verify whether an existing transformation function redy
satisfies TP1 and TP2. In fact, as tiustrated in [17], some
seemin~y comect transformation functions do not redy sat-
isfy TP1 and TP2. More serious attention shotid be given to
the design of transformation functions to better understand
the inttilc interaction (in the form of pr~/pos&conditions)
between transformation functions and transformation control
algorithms.

Research shotid &o be directed toward formal spedca-
tion and verification of operational transformation concepts,
properties, and dgonthms. This formdzation and verifica-
tion is necessary for rigorously proving the correctness of the
algorithms and for analyzing and improving the time and
space complexities of existing algorithms. In [1], a CaCU-
lus for Concurrent Update (CCU) has been derived from the
dOPT algorithm as a tool for the purpose of formal mod-
ehg and vefication of consistency-preserving operational
transformation. The Team Automata [6] is another math~
maticrd model for describing the interaction of a groupware
system components. More work needs to be done in devel-
oping and applying irmovative theoretical took to verify OP
erationd transformation algorithms and systems.

Future r~earch shodd distinguish and explore two types of
consistenci~ one is syntactic consistency, which is concerned
with whether d sites have the same view of the shared ob
jects, regardess of whether the common view makes sense
in the application context; and the other is semantic consis-
tency, which is concerned with whether fl sites have the same
view of the shared objects, as we~ as whether the common
view makes sense in the apphcation cent ext. There may exist
many lev& of syntactic consistency and semantic consistency
in a partitiar app~cation context. Previous work has maidy
explored issues related to syntactic consistency. Partidarly,
the term intention x defined in [14, 17] and used in this paper
has captared ody a smfl piece of the much richer meaning of
intention from the human user’s perspective. This brings up
interesting are= of research concerned with characterization
and preservation of the human user’s intentions in collabor-
ativecontexts, or group intentions. It maybe infeasible for the
system done to automaticdy determine the human group in-
tentions for ~erent groups with divergent group gods. The
system, however, cotid and shotid have mechanisms to help

67



the group wsersdecide their group intentions and resolve their
coficts. In general, we advocate a groupware system design
paradigm, w’hich bdds a ficient amount of generic sup
porting mechanism into the system, but leave the high levd
co~aboration poiicy decisions up to the system users. A good
groupware system shotid be -y tunable by its users for
supporting Itious cohboration needs [2, 10].

A lot. of dorts have been putted on achieving the shofi
est response time (as short as sin~e user editors), but not
much research has been done on not~cation po~cy – when
and how to make Iod updates pub~c to achieve ~obd con-
sistency. Mternatives to notifying remet e sites irnmediatdy
aft= executing an operation at the lod Ste include periodic
notification, notification on demand, greying out the screen
to td w<erthat. the displayed information is out-of-date, etc.
Wture resear& shotid be conducted on mechanisms for sup
porting At.ernative not~cation poficies ad their apphcabd-
ity in ~erent app~cation environments.

Operation grandtity is another unexplored issue. Cur-
rent. transformation dgonthms are ody mpable of hanfig
fin~grain primitive operations, such as Insert and Delete.
Usfi editors, however, must offer to the end user higher
levd compound operations, sud as Jfove, and Replace. On
one baud, the system needs additioti mechanisms to support
comegrain compound operations as = atomic sequence of
primitive operations w~e st~ ensuring consistency proper-
ties. The tither semantics of the compound operations, on
the other hand, cotid hdp the system to better understand
and preserve the m~er’sintentions.

A number of prototype group editom have been bdt in
the pk<t by variou< reearch groups for testing the ftibtity
of transformation-based consistency maintenance dgotithms,
and for investigating system d=gn and implementation i-
sum. GROVE has been used in seva rd groups for a
rariety of design activities to e~duate the system horn users
pers~ective and to gain wsage e\Terience [4, 5]. Since then,
how’ever, Mttle has been reported on using this type of sy~
tern in rd-~e co~aborative environments to study the user’s
w’orking mod= in using the system, and to conduct statistics
analysis of coficts. Iluch more research ~orts shotid be
directed t.ow~ardbetter understanding the potential effects of
this type of systa on people, their work and interactions-

Nthough d the transformation-based consistacy main-
tenance dgonthms and functions were d&gned in the con-
text of text editing, many of them are actudy quite general
and potentidy applicable in other domains of group edit-
ing, It w’odd be interesting and usti to apply operational
transformation in graphics/image/mtitimedia editors to fur-
ther vfidate the generic dgonthrns and to gain more in-
sights in the d~ti~ and application of these typ~ of systems.
Even tetiques used in transforming a sequence of charac-
ters cotid potenti~y be applicable in other rd-time group
\i”aresyst~s, ~rhich &o\v concurrent insertion/d4etion of
any sequence of objects tith a fiearly ordered relationship.
lloreover, operational transformation hx been fouud very
usti in supporting user-initiated collaborative undo opera-
tions [12, 13].

Consistency maintenance is a fundamental isme in many
areas of computing systems, indufig operating systems,
datab~<es systems, distributed shared memory systems,
=d groupware systems. Research on red-time group ed-
itors, as a special class of &tnbuted systems support-

68

ing human-comput er-human interactions, has dram inspira-
tions from tradition distributed computing techniques (e.g.,
aus~/totd ordering of events, state-vector timestamping,
seri&zation, etc.), and has *O invented the non-tradtiond
operational transformation technique to address its special is-
SU-, such as intention-preservation. The generdzation and
application of this unique operational transformation tech-
nique to other areas of distributed computing and CSCW is
an exciting direction for future exploration.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

c.v. Coma& “A calculus for concurrent update: ~search
Report CS-95-06, Dept. of Computer Science, University of Wa-
terloo, Cmada, 1995.
P. Dourish: “Consistency guamteex exploiting application s-
mmtice for consistency mmagement in a collaborative tooklt~ In
Proc. of ACM Conference on Computer Suppotied Cooperative
Work, pp. 26S277, Nov. 1996.
C. A. Elfis and S. J. Gibbs: “Concurrency control in groupware
systems,” In Proc. of ACM SIGMOD Conference on Manage-
ment of Data, pp.399-407, 1989.
C. A. Ellis, S. J. Gibbs, G.L. Rein “Design mrd use of a group
edltOr~ In Engineering for Human-Computer Interaction. G.
Cockton, ~., North-Holl~d, Amsterdam, 1990, pp.1325.
C. A. Elhs, S. J. Gibbs, and G. L. Win: “Groupware: some issues

ad experiences,” CACM 34(l), pp.39-58, Jan. 1991.
C. A. E~i: ‘Team Automata for Groupware Systems: In Proc.
of ACM Conference on Suppotiing Group Work, pp.415-424,
Nov. 1997.
S. Greenberg md D. M-vood: “Real time groupwae as a di%
tributed system: concurrency control and its effect cm the in-
terface,” In Proc. of ACM Conference on Computer Suppotied
Cooperative Work, pp. 207-217, Nov. 1994.
A. K-enty and M. Beaudouin-Lafon: “An algorithm for di+
tributed groupw=e appficaticms~ In Proc. of 13th International
Confemncs on Distributed Computing Systems, pp. 195-202,
May 1993.
L. Lampofi “Time, clocks, ad the ordering of events in a di%

tributed system: CACM 21(7), pp.55&565, July 1978.
[10] J. hfunsorr md P. De\van: “A concurrency control framework for

collaborative systems: In Proc. of ACM Conference on Corn.
puter Suppotied Cooperative Work, pp. 27%287, Nov. 1996.

[11] D. Nichols, P. Curtis, M. Dixon, and J. Lamping “High-latency,
low-badwidth windowing in the Jupiter collaboration system:
In Proc. of ACM Symposium on User Interface Software and
Tschnofogies, pp. 111-120, Nov. 1995.

[12] A. P&h =d M. Kniste~ “A framework for undoing xtions
h collaborative systems: ACM ~ansactions on Computer-
Human Interaction, 4(1), pp.295-330, lg94.

[13] hf. Ressel, D. Nitsch&Ruhlmrd, md R. Gunzenbauser:”An inte-
~ting, tmsformation-oriented approti to concurrency control
=d undo in group editors: In Proc. of ACM Conference on
Computer Supported Cooperative Work, pp 28%297, Nov. 1996.

[14] C. Sun, Y.Yarrg, Y. Zhang, ad D. Chen: “A consistency model
and suppotiing schem= for real-time cooperative editing sy+
terns,” In Proc. of The 19th Australasian Computer Science
Confemncs, pp. 582-591, Melbourne, Jan. 1996.

[15] C. Sun, X. Jia, Y. Zhmg, and Y. Yang “A generic operation
transformation scheme for consistency maintenance in real-time
cooperative editing systems, ,* In pro~. Of ACM Conference On

Suppotiing Group Work, pp. 425-434, Nov. 1997.
[16] C. Sun, D. Chen, X. Jia “Reversible inclusion and exclusion

t-sformaticm for string-wise operations in cooperative editing
systems; In Proc. of The 21st Australasian Computer Science
Conference, pp.441-452, Springer-Verlag, Perth, Feb. 1998.

[1~ C. Sun, X. Jia, Y. Zhmrg, Y. Ymg, and D. Chen: “Achieving
convergence, causatity-presemtion, and intention-presemtimr in
real-time cooperative editing systems: ACM Transactions on
Computer-human Interaction, 5(l), March 1998, pp.6&108.

I

I

I

— .— —


