
Operat ing R. Stockton Gaines
Systems Editor

An Improved
Algorithm for
Decentralized
Extrema-Finding
in Circular
Configurations
of Processes
Ernest Chang
University of Toronto

Rosemary Roberts
University of Waterloo

This note presents an improvement to LeLann's
algorithm for finding the largest (or smallest) of a set of
uniquely numbered processes arranged in a circle, in
which no central controller exists and the number of
processes is not known a priori. This decentralized
algorithm uses a technique of selective message
extinction in order to achieve an average number of
message passes of order (n log n) rather than O(n2).

Key Words and Phrases: decentralized algorithms,
distributed systems, operating systems

CR Categories: 4.32, 4.35, 5.25, 5.32

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was made possible through the assistance of Health and
Welfare, Canada.

Authors' present addresses: E. Chang, Computer Science Depart-
ment, University of Waterloo, Waterloo, Ontario N2K IN7, Canada;
R. Roberts, Unity College, Unity, Maine 04988.
© 1979 ACM 0001-0782/79/0500-0281 $00.75

281

Introduction

Given a r a n d o m circular a r rangement o f uniquely
numbered processes where no a priori knowledge o f the
number o f processes is known, and no central controller
is assumed, we would like a me thod o f designating by
consensus a single unique process. The algori thm we
propose works equally well for finding either the highest
numbered or the lowest numbered process. Let us, with-
out loss o f generality, consider highest fmding.

A situation in which this a lgori thm is impor tant has
been presented by L e L a n n [1]. In his example, a circle o f
controllers in which the control token is lost causes every
controller to time out, and an election to fred a new
emitter for the control token is performed. LeLann ' s
algori thm requires every controller to send a message
beat ing its number . Each controller thus collects, th rough
the messages seen, the numbers o f the other controllers
in the circle. Every controller sorts its list, and the
controller whose own number is the highest on its list is
elected.

LeLann ' s algorithm, in a circle with n controllers,
requires total messages passed propor t ional to n 2, written
O(n2), where a message pass is a S E N D o f a message
f rom a controller. This is clearly so, since each o f
the n controllers sends a message which is passed to all
other nodes. Our algori thm requires, on the average,
O(n log n) message passes.

The Algorithm

Each process is assumed to know its own number ,
and initially it generates a message with its own number ,
passing it to the left. A process receiving a message
compares the number on the message with its own. I f its
own number is lower, the process passes the message (to
its left). I f its own number is higher, the process throws
the message away, and if equal, it is the highest num-
bered process in the system.

Proposition: This a lgori thm detects one and only one
highest number .

Argument: By the circular nature o f the configurat ion
and the consistent direction o f messages, any message
must meet all other processes before it comes back to its
initiator. Only one message, that with the highest num-
ber, will not encounter a higher number on its way
around. Thus, the only process getting its own message
back is the one with the highest number .

Startup Conditions

It may not be the case that all processes are aware o f
the need to initiate a message before messages start
arriving. Assume therefore that at least one process
initiates a message. Then the rule is that each process
initiating a message marks itself. A message arriving at

Communications May 1979
of Volume 22
the ACM Number 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359104.359108&domain=pdf&date_stamp=1979-05-01

an unmarked process causes that process to mark itself
and then generate a message according to the above
algorithm. Otherwise, the algorithm performs as before.
This minor modification ensures that all processes which
would eventually be involved are indeed involved. The
elected process must assume the responsibility of ensur-
ing that every process unmarks itself so that subsequent
elections can be held successfully.

Performance Analysis

The model we will use is a circle of processes num-
bered from 1 to n, with a clockwise movement of mes-
sages. We are interested in two measures-- the time
needed to find the highest and the number of message
passes (as previously defmed). Call the message initiated
by process i, message i.

Time Behavior

The algorithm succeeds when the highest number is
found. If all processes start simultaneously, then since
only one cycle through the ring is needed, the time
required is O(n), where n is the number of processes. If
the highest numbered process starts first, then its message
would take one cycle, and the time required is O(n).
However, if the process furthest away from the longest
is the only one to initiate the election, then the time
required would be O(n - 1) for a message to get to the
largest process, and O(n) for the largest to be elected.
Thus, the time would be O(2n - 1). In all cases, never-
theless, the time behavior for election is linearly propor-
tional to n.

M e s s a g e P a s s e s

(a) Best Case. Processes are ordered clockwise in
increasing sequence so that each message (except mes-
sage n) only goes once. There are n - 1 of these, while
message n requires n passes. Thus, the total number of
message passes is n + n - 1 = 2n - 1.

(b) Worst Case. Processes are ordered clockwise in
decreasing sequence so that message i must be passed i
times. Thus, the total number of message passes is

n
2i~1 i = n(n + 1)/2.

(C) Average Case.

@
2.82

k-1 smaller than i

kth is larger

Let P(i, k) be the probability that message i is passed
k times, which is the probability that the k - 1 clockwise
neighbors of i are less than i and the kth clockwise
neighbor of i is larger than i. There are i - 1 processes
less than i and n - i processes larger than i.

Write C(a, b) as the number of ways of choosing b
things from a things. Then

C (i - l , k - 1) n - i
P(i, k) - C(n - 1, k - 1) × - ' n - k

Knowing that the message n always takes n passes
and there is only one such message, we therefore consider
only n - 1 messages, each making, at most, n - l passes.
Therefore, the expected number of passes for messages
other than message n is

n - - 1

Ei (k) = 2 k P(i, k) i # n.
k ~ l

Therefore, the expected number of message passes, for
all the messages, is

n - - 1 n - - 1

E(k) = n + 2 • kP(i, k).
i=l k = l

This can be simplified to

n - - 1 n
E(k) = n +

k=lk+ 1

("
= n l + g + g + . . . + .

The harmonic series has a partial sum of C + loge n, and
therefore the average number of message passes is
O(n log n).

Concluding C o m m e n t s

Some simple variants of this algorithm are of interest.
If the message originating at process i came to process j
before j had emitted message j and i > j, then clearly j
cannot be the largest node. Thus, it is unnecessary for j
to emit its own message. In the best case, in which the
highest process n is the only initiator, the number of
required message passes improves from 2n - 1 to n.

We have assumed that all processes are to be involved
in an election. A more "voluntary" situation is easily
accommodated by modifying the start-up mechanism. If
node i has not sent out message i by the time another
message reaches it, then it simply does not participate in
the current election. If it should subsequently wish to
join in, it must wait till the next election.

Finally, consider briefly failure under the best of
circumstances--a single node "vanishes" without taking
any message or disrupting communications. If the failing
node is not the highest node n, the election would not be
affected. If it is the highest but message (n - 1) has not
yet been extinguished, things would still be fine for node
(n - 1) would be correctly elected. If node n fails after

Communications May 1979
of Volume 22
the ACM Number 5

message (n -- 1) has been extinguished, however, then
no node would be elected. Still, message n would keep
circulating, and this condit ion is detectable with suitable
modif icat ion to the algorithm.

In conclusion, the highest element o f a set o f n things
can be found in O(n) comparisons, but n must be known.
Alternatively, if a single process can be designated a
priori in a circle o f processes, it can also find the highest
numbered process in O(n) comparisons. However, little
study has been made o f completely decentralized control,
in which processes do not know how m a n y other pro-
cesses are involved, and a uniquely designated process
does not exist. It is pleasing to know that even under
these circumstances, decentralized algori thms are simple
and efficient.

Received November 1977; revised October 1978

References
1. LeLann, G. Distributed systems-Towards a formal approach.
Information Processing 77, North-Holland Pub. Co., Amsterdam, pp.
155-160.

Social Impacts R. Kling
of Comput ing Editor

Consumer Difficulties
With Computerized
Transactions: An
Empirical
Investigation
T.D. Sterling
Simon Fraser University,
British Columbia, Canada

The prevalence with which errors may be
encountered by the end targets of a computerized
process is assessed. How many and what type. of errors
occur? How easily are they corrected? Wha t is the
reaction of consumers to e r r o r s - - t o a failure to correc t
them? Wha t can be learned by designers of large
management packages from such data?

Results show that with the present state of the art,
approximately 40 percent of individuals (or households)
having average contacts with different types of
accounts experience one or more errors per year.
Eighty percent relate to billing. At tempts to correct
errors often turned out to be difficult and not always
successful.

There appears to be some conflict between
computer-using organizat ions and their public. Also the
role of poor management packages including poor
software is indicated. While most management systems
may be adequate, results of the survey raise concerns
about the timeliness and the number of designs of very
large linked program packages (as EFT for instance).

Key Words and Phrases: errors, systems errors,
billing errors, management systems, consumers

CR Categories: 2.0, 2.1, 2.12, 2.2, 3.50, 3.52, 3.55,
4.19, 4.6

283

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author's address: T.D. Sterling, Dept. of Computing Science,
Simon Fraser University, Burnaby, B.C., Canada V5A 156.
© 1979 ACM 0001-0782/79/0500-0283 $00.75.

Communications May 1979
of Volume 22
the ACM Number 5

