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Abstract

The Bayou architecture provides scalability, availability, extensibility, and adaptability features that address
database storage needs of world-wide applications. In addition to discussing these features, this paper presents
Bayou’s mechanisms for permitting the replicas of a database to vary dynamically without global coordination. Key
is the use of weak consistency replication among autonomous machines and strict adherence to the tenet that no oper-
ation should involve more than two machines.

1.  Introduction

Providing scalability, availability, extensibility and adaptability are some of the important challenges faced by
designers of world-wide applications and the infrastructure upon which these applications are built. Successful appli-
cations running over the emerging global information superhighway must be scalable to support a potentially large,
widely-distributed user community. The application’s data must be available when any one of the many users needs it.
The code base of the applications is likely to evolve and must be able to do so incrementally. The applications must
also be adaptable since their demands will be unpredictable and variable. Weakly consistent replication of data among
autonomous servers is the key to meeting these demands.

The Bayou system is a weakly consistent replicated database designed to support applications in which distrib-
uted users collaborate by reading and writing shared data [11]. Bayou was designed primarily for mobile computing
environments where intermittent network connectivity coupled with the desire for high data availability dictates a
weak consistency approach to data replication. However, Bayou’s design also exhibits good scalability, extensibility,
and adaptability since no operation involves more than two machines. In particular:

• Clients can read from and write to any server.

• Servers propagate writes among themselves via a pairwise anti-entropy protocol that permits incremental
progress.

• A new database replica, i.e. server, can be created from any existing replica.

• New conflict detection and resolution procedures can be introduced at any time by clients and their applications.

The basic Bayou architecture, including its support for session guarantees and automatic resolution of update
conflicts, has been described in previous publications [3][10][11]. The following section focuses on the scalability,
availability, extensibility and adaptability features of Bayou. Then we present a more detailed discussion on one
aspect of adaptability, namely how to dynamically create and destroy replicas without requiring global consensus
among servers. This is a topic that, to our knowledge, has not been adequately discussed in the published literature.



2.  Important Bayou ‘Bilities

2.1  Scalability

To maximize scalability, the cost of performing an operation at a replica, and the amount of storage required at
each replica should be as independent as possible from the number of replicas. Importantly, all Bayou operations,
including reading data, writing data, propagating updates between replicas, and creating/destroying replicas involves
no more than two computers. Thus the direct cost of these operations is unaffected by the addition of new replicas. By
contrast, consider a strongly consistent replicated database that uses a quorum based scheme. Since reads and writes
must go to an overlapping quorum of servers, and since writes must be atomically committed at a majority of servers,
the operation costs depend critically on the number of replicas. Thus, strong consistency schemes are not attractive
for large numbers of replicas or even for small numbers of replicas that are widely distributed and have high inter-rep-
lica communication costs.

Bayou’s anti-entropy protocol for propagating updates between replicas in a lazy and incremental fashion is also
important to its scalability. Importantly, the data exchanged during an anti-entropy session between two servers is
simply a pair of version vectors plus any write operations that are unknown to one of the servers. The amount of
information transferred does not depend on the overall size of the database. Moreover, this exchange is structured so
that the servers move their replicas towards a mutually consistent state even if they become disconnected during the
session. Unfortunately, the details of Bayou’s anti-entropy protocol cannot be adequately presented within the page
constraints of this paper.

With regards to storage costs, each Bayou replica maintains a database and a log of write operations. The data-
base size depends solely on the application’s storage needs. Techniques for partial replication, permitting replicas to
only store a portion of the database, are being explored but are not included in the current Bayou system implementa-
tion. The size of a replica’s write log depends on the frequency of updates to the database and the frequency of anti-
entropy. This is because replicas are allowed to prune committed writes from their write logs [11].

There is, however, one area in which the Bayou design introduces per-replica storage requirements that depend
on the degree of replication, namely in its use of version vectors. Each replica maintains two version vectors that con-
tain an entry for each active replica, one for committed and one for tentative writes. Vectors are exchanged between
servers in the first phase of the anti-entropy protocol to determine those writes that have been seen by one server but
not the other. Bayou clients also maintain such version vectors to enforce per session consistency guarantees [5]. For-
tunately, the size of each entry in these version vectors is relatively small since they simply contain a unique server
identifier and a timestamp.

2.2  Availability

Availability in Bayou is maximized by its use of a read-any/write-any replication scheme. That is, any client that
can access a server can read and update that server’s replica. The primary cost of such availability is the client’s need
to deal with weakly consistent data and the possibility of conflicting updates. Bayou provides clients with some
degree of control over the tradeoffs between consistency and availability through stronger, client-selectable consis-
tency guarantees, called “session guarantees” [10]. These can provide an application with a view of the replicated
database that is consistent with its own reads and writes during a session while retaining the principal benefits of a
read-any/write-any replication scheme, namely high-availability, simplicity, and scalability. Furthermore, Bayou’s
support for application-specific conflict detection and resolution enables clients to handle update conflicts in an
appropriate manner [11].

2.3  Extensibility

The ability to dynamically extend the functionality of a system is also important when supporting widely
deployed applications. Bayou permits such extensibility in the dependency checks and merge procedures used to



automatically detect and resolve update conflicts [11]. Since these checks and procedures are passed with each write
operation and may vary from write to write, the functionality embedded in them may change as an application
evolves. The new functionality is propagated to servers with the writes via Bayou’s anti-entropy protocol. Impor-
tantly, there is no need to update a group of servers at the same time in order to introduce new conflict resolution pro-
cedures.

2.4  Adaptability

Eventually, each Bayou write becomes stable or committed through a primary server commit protocol [11].
Dynamically changing which server is playing the role of the primary is one means of adaptability in Bayou. One
may wish to move the primary in response to changing access patterns, for instance, so that the locus of update activ-
ity is near the primary server. To become the primary, an existing Bayou server need only contact the existing pri-
mary, bring its database up-to-date with respect to the existing primary, and then take on the primary’s
responsibilities, namely ordering and committing write operations.

As another example of adaptability, the Bayou architecture allows for servers of a database to be created and
destroyed over the lifetime of the database. In keeping with Bayou’s goal of requiring only pairwise communication
between clients and servers and between servers, a Bayou server can be created from any other server and may cease
to exist by communicating with only one other server. The next section presents the details of how this is accom-
plished.

3.  Dynamic Creation and Destruction of Servers

3.1  Some Bayou Basics

This subsection provides some background on Bayou, including Bayou’s eventual consistency model, ordering
of writes, and representation of version vector state. This information is necessary to understand the mechanisms for
dynamic replication presented later in the section.

The weak consistency model adopted by Bayou permits database copies at different servers to vary but ensures
that each write is eventually received by each server. Bayou is designed so that servers move towardseventual consis-
tency. The properties that guarantee eventual consistency are: total propagation of writes by the anti-entropy process,
consistent ordering of writes at all servers and deterministic execution of writes [11]. For this section, the ordering of
writes is most relevant and therefore discussed in more detail below.

All Bayou servers maintain a log of writes they have received and apply these writes to their databases in the
same global order. The position of a write in the global order gets established by itswrite-stamp, a three tuple <com-
mit-stamp, accept-stamp, server-id>. The accept-stamp and server-id are assigned to a write when it is first accepted
by a Bayou server from a client. At that point, the write is deemed tentative and its commit-stamp will be set to infin-
ity. Committing a write finalizes the write’s position in the global order by assigning the write a unique monotonically
increasing commit timestamp. Hence, committed writes are ordered according to the times at which they commit and
before any tentative writes.

Bayou also maintains the following write-propagation property, called the “prefix” property: If a server,S1, holds
a write Wx that was initially accepted from a client by another server,S2, thenS1 will also have received all other
writes accepted byS2 prior toWx. That is,S1 will know of all writes accepted byS2 with an accept-stamp smaller than
the one ofWx.

Bayou uses the prefix property to compactly represent the state of a server with a version vector:

WriteVector : a mapping from server identifiers to accept-stamps.WriteVector precisely identifies all the writes
known to a server. Specifically,S1.WriteVector(S2) is the largest accept-stamp of all the writes known toS1 that
were originally accepted from a client byS2.



3.2  Managing Dynamic Version Vectors

As Bayou servers learn of new servers or of the retirement of previously known servers, their version vectors
grow and shrink accordingly. In a long-lived system, having destroyed servers stop consuming resources in the
remaining servers is particularly important. This means that destroyed servers must be eliminated from the version
vectors used by Bayou to summarize the writes known to a server. Interestingly the ordering and prefix properties of
Bayou writes can be used for this purpose.

A Bayou serverSi creates itself by sending acreation write to another serverSk. Any server for the database is
sufficient for this purpose. The creation write is handled bySk just as a write from a client. It receives a write-stamp of
the form<infinity, Tk-i, Sk>, whereTk-i is the accept-stamp assigned to the creation write bySk, and is inserted inSk’s
write log. Once created,Si can perform anti-entropy withSk to receive the database contents.

The creation write serves two main purposes. First, as it propagates via anti-entropy, it informs other servers of
the existence ofSi. The effect of the write is that an entry forSi gets added to the server’sWriteVector. Second, it pro-
videsSi with a server-id that is globally unique. Specifically, the<Tk-i, Sk> component of the write-stamp ofSi’s cre-
ation write becomesSi’s server-id.

When a server is going to cease being a server for a database, it does so by issuing adestruction write to itself.
Again, the write is stamped just like any other Bayou write. Its meaning is that the server is going out of service. At
this point, the server can no longer accept new writes from clients. However, the server must remain alive until it does
anti-entropy with at least one other server so that all its writes, including its destruction write, get propagated to other
servers.

When a server receives a destruction write, it removes an entry from its version vector. The prefix property
ensures that a serverSk will have received and processed all writes accepted bySi before removingSi from its version
vector.

One thorny problem remains, however: a creation or destruction write may never reach some servers because
servers are allowed to truncate committed writes from their log to save storage resources. For instance, a server may
learn of a committed destruction write, process it, and then immediately discard it. Thus during anti-entropy, a server
may be presented with a version vector from another server with entries for server-ids that it does not know about,
and vice versa.

A serverSi may be absent from another server’s version vector for two reasons: either the server never heard
aboutSi, or it knows thatSi was created and subsequently destroyed. This is the classic create/delete ambiguity. Fortu-
nately, the recursive nature of server identifiers in Bayou allows the server to determine which case holds.

Consider the scenario in whichS1 andS2 exchange their version vectors during anti-entropy andS1 has an entry
for Si = <Tk-i, Sk> whereasS2 does not. There are two possible cases:

If S2.WriteVector(Sk) ≥ Tk-i, then serverS2 has seenSi’s creation write; in this case, the absence ofSi from
S2.WriteVector means thatS2 has also seenSi’s destruction.S1 can safely assume that serverSi is defunct and
remove it from its version vector.

If S2.WriteVector(Sk) < Tk-i, then serverS2 has not yet seenSi’s creation write, and thus cannot have seen the
destruction either.S2 should therefore add an entry forSi to its version vector.

This scenario assumes thatS2.WriteVector includes an entry forSk. Since multiple servers may go out of service or
be created at about the same time,S2’s version vector may be missing entries for bothSi andSk in the example used
above. The presence of an entry forSk is not essential to identify destroyed servers. Bayou’s algorithm is based on the
recursive nature of the server identifiers. Imagine aCompleteWriteVector that extends the information stored in the
WriteVector to include timestamp entries for all possible servers. A recursive function can compute entries for this
extended vector as follows:



CompleteWriteVector(Si = <Tk-i, Sk>) =
WriteVector(Si) if explicitly available
minus infinity if CompleteWriteVector(Sk) < Tk-i
plus infinity if CompleteWriteVector(Sk) ≥ Tk-i

A value of minus infinity indicates that the server has not yet seenSi’s creation write, and plus infinity indicates
that the server has seen bothSi’s creation and destruction writes. The recursion terminates correctly as long as the
entry for the oldest server in the system never gets removed from the version vector. A server can use itsComplete-

WriteVector as defined above to correctly resolve differences between the set of replicas represented in its version vec-
tor and those known to another server.

In summary, the Bayou write ordering and propagation properties enables the system to handle creation and dele-
tion of servers with the same pairwise communication paradigm as all other Bayou operations.

4.  Related Work

A number of systems have been designed based on weak consistency replication among peers that process read
requests locally and propagate writes in a lazy fashion. Hence, they achieve the same basic scalability and availability
properties of Bayou. These systems include Grapevine [1], Clearinghouse [2], Locus [12], Ficus [4], and Lotus Notes
[5]. In particular, all of these systems provide better scalability and availability than replicated systems based on
strong consistency. They all differ from Bayou along several axis: use of version vectors, management of conflicts,
and consistency seen by clients.

The Locus project at UCLA pioneered the use of version vectors [8], which have been adopted for use in many
other replicated systems. However, we are not aware of any systems in which the size of a version vector adjusts
dynamically in response to changes in the set of replicas. This adaptability could prove to be very important for
world-wide applications.

With regards to conflict detection and resolution, systems like Coda [6] and Ficus [9] require resolvers, the equiv-
alent of Bayou’s merge procedures, to be installed in each server. Thus, changing or adding resolvers to evolve or
extend an application’s functionality is a fairly heavyweight operation. Bayou is the first system we know that permits
the rules for application-specific conflict detection and resolution to vary for individual write operations.

While Bayou’s session guarantees have not been the focus of this paper, it is worth noting that they provide appli-
cations with intermediate levels of consistency without sacrificing the desirable scalability properties [10]. The lazy
replication work from MIT comes closest to matching Bayou’s replication and consistency features [7].

5.  Conclusions

The Bayou replicated database system has managed to achieve good scalability by strict adherence to the tenet
that no operation should involve more than two machines. This design principle also leads to other properties that are
necessary for world-wide applications, including availability, extensibility, and adaptability. Some operations, such as
reading and writing data, involve a single client and any server. Operations such as exchanging writes between repli-
cas and creating new replicas occur between two server machines. Some functions, such as detecting and resolving
conflicting updates and applying writes in a consistent order can be done locally by a server without further commu-
nication. The key to Bayou’s design is the use of weak consistency replication among autonomously operating serv-
ers.
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