
Bioinformatics I, WS’09-10, D. Huson, February 10, 2010 189

12 More on Suffix Trees

This week we study the following material:

• WOTD-algorithm

• MUMs

• finding repeats using suffix trees

12.1 The WOTD Algorithm

The suffix tree construction algorithm from Sect. 9.8 has the drawback that it needs to construct the
entire tree before we can start querying. Hence, if we only have a few queries to pose, then it may be
wasteful to compute the whole suffix tree.

The “write only, top down” algorithm due to R. Giegerich, S. Kurtz, and J. Stoye (2003) also has
good memory locality, and can also be used for a lazy construction of the suffix tree, building only as
much of the tree as is necessary to satisfy a given query.

Although it requires O(n log n) average run-time, in practice it is often competitive.

12.1.1 Basic idea: Compute tree recursively

Note that the subtree below a branching node u is determined by the set of all suffixes of T$ that
start with the prefix u:

US1

US2
USk

U

S1 S2

U

Sk

...
...

So, if we know the set of remaining suffixes

R(u) := {s | us is a suffix of T$},

then we can evaluate the node u, i.e. construct the subtree below u.

An unevaluated node is evaluated as follows: We partition the set R(u) into groups by the first letter
of the strings, i.e. for every letter c ∈ Σ, we define the c-group as:

Rc(u) := {w ∈ Σ∗ | cw ∈ R(u)}.

Consider Rc(u) for c ∈ Σ. If Rc(u) 6= ∅, then there are two possible cases:

1. If Rc(u) contains precisely one string w, then we construct a new leaf edge starting at u and
label it with cw.

2. Otherwise, the set Rc(u) contains at least two different strings and let p denote their longest
common prefix (lcp). We create a new c-edge with label p whose source node is u. The new
unevaluated node up and set R(up) = {w | pw ∈ Rc(u)} will be (recursively) processed later.

The wotd-algorithm (write-only, top-down) starts by evaluating the root node, with R(root) equal to
the set of all suffixes of T$. All nodes of ST (T ) are then recursively constructed using the appropriate
sets of remaining suffixes in a top-down manner.



190 Bioinformatics I, WS’09-10, J. Fischer (script by D. Huson) February 10, 2010

12.1.2 Example

Consider as an example the following text:

T = abab$

The wotd-algorithm proceeds as follows:

1. Evaluate the root node root using

R(root) = {abab$, bab$, ab$, b$, $}.

There are three groups of suffixes:

Ra(root) = {abab$, ab$}, Rb(root) = {bab$, b$} and R$ = {$}.

The letter $ gives rise to a leaf edge with label $. The letter a gives rise to an internal edge with
label ab, because ab = lcp(Ra(root)). Similarly, for b we obtain an internal edge with label b,
because b = lcp(Rb(root))

abab$
bab$
ab$
b$
$

R(root):

⇒
R(ab): R(b):

b
a

b
$

ab$
$

ab$
$

2. For the node ab we have R(ab) = {ab$, $} and thus Ra(ab) = {ab$} and R$(ab) = {$}. Because
both latter sets have cardinality one, we obtain two new leaf edges with labels ab$ and $,
respectively.

3. Similarly, for the node b we have R(b) = {ab$, $}, and thus we obtain two new leaf edges with
labels ab$ and $ .

As a result of wotd we obtain the following full suffix tree:

b
a

b
$

$
$

ab
$

$b
a

12.1.3 Implementation of the suffix tree data-structure

An implementation of a suffix tree must represent its nodes, edges and edge labels. To be able to
describe the implementation, we define a total ordering on the set of children of a branching node:

Let uv and uw be two different children of the same branching node u in ST (T ) . Recall that we
defined L(p) to be the leaf set under the node p. We write

uv ≺ uw iff min L(uv) < min L(uw).

That implies that the first occurrence min L(uv) of uv in T$ comes before the first occurrence
min L(uw) of uw in T$.



Bioinformatics I, WS’09-10, J. Fischer (script by D. Huson) February 10, 2010 191

Representing edge labels efficiently

Recall our representation of edge labels:

Remark 1: Because an edge label s is a substring of the text T$, we can represent it by a pair of
pointers (i, j) into T ′ = T$ such that s = t′it

′
i+1 . . . t′j .

For example, for abab$ we get

1,2 2,2

3,5

1

5,5

5

4

5,5

3

3,5

2
5,5

However, note that we have j = n + 1 for any leaf edge and so in this case the right pointer is
redundant. Hence:

Remark 2: A leaf edge requires only one (left) pointer.

The following is not as easy to see:

Remark 3: An internal edge requires only one pointer per node.

This is made possible by defining a left pointer on the set of nodes (not edges) in such a way that
these can be used to reconstruct the original left and right pointers of each edge, as follows:

Consider an edge u
v→ uv. Define the left pointer lp of uv as the position p of the first occurrence of

uv in T$ plus the length of u:
lp(uv) = min L(uv) + |u|.

This gives the start position i of a copy of v in T$.

To get the end position of v, consider the ≺-smallest child uvw of uv. We have min L(uv) =
min L(uvw), i.e. the corresponding suffix starts at the same position p. By definition, we have

lp(uvw) = min L(uvw) + |uv| = min L(uvw) + |u|+ |v| = lp(uv) + |v|,

and the end position of v equals lp(uvw)− 1.

t vu w

lp(uvw)lp(uv)

min l(uv)=min l(uvw)
i r

The main data table

For each node u, we store a reference firstchild(u) to its smallest child.

We store the values of lp and firstchild together in a single (integer) table Tbl. We store the values
of all children of a given node u consecutively, ordered w.r.t. ≺. (We will indicate the last child of u by
setting its lastchild -bit.)

So, only the edge from a given node u to its first child is represented explicitly. Edges from u to its
other children are given implicitly and are found be scanning consecutive positions in Tbl that follow
the position of the smallest child.

We reference the node u using the index of the position in Tbl that contains the value lp(u).



192 Bioinformatics I, WS’09-10, J. Fischer (script by D. Huson) February 10, 2010

Storing an unevaluated node

We consider the wotd-algorithm as a process that evaluates the nodes of a suffix tree. It starts at the
root and then evaluates all nodes recursively.

First we discuss how to store an unevaluated node u.

To be able to evaluate u, we (only) need to know the set of remaining suffixes R(u). To make these
available, we define a global array called suffixes that contains pointers to suffixes in T$ and use it as
follows:

For every unevaluated node u, the suffixes array contains an interval of pointers to start positions in
T$ that correspond precisely to the suffixes contained in R(u), in increasing order.

We can now represent R(u) in Tbl using two numbers, left(u) and right(u), that define an interval of
entries in the suffixes array.

If u is a branching node, then u will occupy two positions in Tbl, one for lp(u) and followed by
firstchild(u). Until u is actually evaluated, we will use these two positions to store left(u) and right(u).
We use a third bit called the unevaluated -bit to distinguish between unevaluated and evaluated nodes.

Evaluating a node u

First note that the left pointer lp(u) of the node u is given by the left-most entry of suffixes over the
interval [left(u), right(u)].

Determine the length of the longest common prefix lcp of entries in suffixes over [left(u), right(u)] add
it to all these entries.

The lcp is computed by stepping through a simple loop j = 1, 2 . . . and checking the equality of all
letters tsuffixes[i]+j for all start positions i in [left(u), right(u)]. As soon as a difference is detected, the
loop is aborted and j is the length of the lcp.

Sort and count all entries of suffixes in the interval [left(u), right(u)], by the first letter c of the suffixes
as the sort key. (Do this stably, i.e. don’t change the order of suffixes that start with the same letter.)

Each letter c that has count > 0 will give rise to a new node v below u and the suffixes in the c-group
Rc(u) determine the tree below v.

For each non-empty c-group of u, we store one child in the table Tbl, as follows:

Leaf case: A c-group containing only one string gives rise to a leaf node v and we write the number
lp(v) in the first available position of Tbl. This number lp(v) is obtained as the single entry of suffixes
that corresponds to the c-group.

Internal node case: A c-group containing more than one string gives rise to branching node v and
we store left(v) and right(v) in the first two available positions of Tbl. The values of left and right
are computed during the sort and count step.

12.1.4 Lazy vs. complete evaluation

To build the complete suffix tree, we proceed breadth-first, from left to right.

In a lazy approach, we only evaluate those nodes that are necessary to answer a query (and have not
yet been evaluated).



Bioinformatics I, WS’09-10, J. Fischer (script by D. Huson) February 10, 2010 193

12.1.5 Example

Input: Text: a b a b $
1 2 3 4 5

Initial.: suffixes: 1 2 3 4 5 Tbl:

Evaluate(root):
Sort and count: Ra(root) = {1, 3}, lcp = ab

Rb(root) = {2, 4}, lcp = b
R$(root) = {5}

The suffixes are ordered, left and right are entered in the table and the three bits (u, ∗, †:
unevaluated , leaf , lastchild) are set:

suffixes: 1 3 2 4 5 Tbl: 1 2 3 4 5
u u ∗†(

Text : a b a b $
1 2 3 4 5

)
Evaluate(1):
Note lp(1) = suffixes[Tbl[1]] = suffixes[1] = 1 and firstchild(1) = 6, thus:

Tbl: 1 6 3 4 5
u ∗†

Determine lcp of entries suffixes[1 . . . 2] (lcp =ab, thus length=2) and add it to values of suffixes[1 . . . 2]:
suffixes: 3 5 2 4 5

Determine c-groups and then add appropriate nodes:
Ra(1) = {3}
R$(1) = {5}

Tbl: 1 6 3 4 5 3 5
(u) u ∗† ∗ ∗†(

Text : a b a b $
1 2 3 4 5

)
Evaluate(3):
Note lp(3) = suffixes[Tbl[3]] = suffixes[3] = 2 and firstchild(3) = 8, thus:

Tbl: 1 6 2 8 5 3 5
u ∗† ∗ ∗†

Determine lcp of entries suffixes[3 . . . 4] (lcp =b, thus length=1) and add it to values of suffixes[3 . . . 4]:

suffixes: 3 5 3 5 5

Determine c-groups and then add appropriate nodes:
Ra(3) = {3}
R$(3) = {5}

Tbl: 1 6 2 8 5 3 5 3 5
(u) ∗† ∗ ∗† ∗ ∗†

Done!

The table Tbl for ST (abab):



194 Bioinformatics I, WS’09-10, J. Fischer (script by D. Huson) February 10, 2010

node ab b $ abab$ ab$ bab$ b$︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷
Tbl 1 6 2 8 5 3 5 3 5
Index 1 2 3 4 5 6 7 8 9

Bits ∗ † ∗ ∗ † ∗ ∗ †

12.1.6 Finding occurrences in a WOTD tree

Suppose we are given a text text and have computed the WOTD tree T . How do we determine all
occurrences of a given query string q?

This is done by navigating into the tree and matching the letters of the query with the letters of the
edge labels until we have used-up all the letters of the query. Once we have established that the query
is contained in the tree, we visit all nodes below the location at which the query was fullfilled and
report one occurrence for each leaf.

Recall that the position of an occurrence is not stored in the tree, however, it can be obtained by
keeping track of the depth of nodes which is the sum of lengths of all edge labels along the path from
the root to the node.

12.1.7 Properties of the WOTD-algorithm

• Complexity: Space requirement? Worst case time complexity? (exercises. . . )

The expected running time is O(n logk n) and experimental studies indicate that the algorithm
often performs in linear time for moderate sized strings.

• Good memory locality.

• Algorithm can be parallelized.

12.2 Applications of Suffix Trees

1. Searching for exact patterns

2. Minimal unique substrings

3. Maximum unique matches

4. Maximum repeats

12.2.1 Searching for exact patterns

To determine whether a string q occurs in a string t, follow the path from the root of the suffix tree
ST (T ) as directed by the characters of q. If at some point you cannot proceed, then q does not occur
in t, otherwise it does.

Example: Text abab$.

b
a

b
$

$
$

ab
$

$b
a

1 3 2 4

5

The query abb is not contained in abab.



Bioinformatics I, WS’09-10, J. Fischer (script by D. Huson) February 10, 2010 195

(Navigating into the tree and matching the first two letters ab, we arrive at the node ab, however there
is no b-edge leaving from there.)

The query aba is contained in abab.

Determining whether q occurs in t requires O(|q|) time.

12.2.2 Finding all occurrences

To find all positions where the query q is contained in t, annotate each leaf si of the suffix tree with
the position i at which the suffix i starts in t.

Then, after matching q to a path in the tree, visit all nodes below the path and return the annotated
values.

This works because any occurrence of q in t is the prefix of one of these suffixes.

The number of nodes below the path is at most twice the number of hits and thus finding and collecting
all hits takes time O(|q|+ k), where k is the number of occurrences.

(Note that in the discussed lazy suffix tree implementation we do not use this leaf annotation but rather compute
the positions from the lp values, to save space...)

12.2.3 Minimal Unique Substrings

Definition 12.2.1 (Minimal unique substrings problem) Assume we are given a sequence s ∈
Σ∗, and a number L > 0. The minimal unique substrings problem consists of enumerating all substrings
u ∈ Σ∗ of s satisfying the following properties:

• u occurs exactly once in s,

• |u| ≥ L, and

• all proper prefixes of u occur at least twice in s.

Example: Let s = abab and L = 2. Then the minimal unique substrings are aba and ba. Note, that
bab is not a minimal unique substring, since the proper prefix ba of bab is already unique, i.e. the
minimality condition does not hold.

Question: How can suffix trees be used to solve the minimal unique substring problem?

Applications of this in “primer design”.

12.2.4 Application: Maximum Unique Matches

Modern sequencing and computational technologies and advances in bioinformatics has made whole
genome sequencing possible. One resulting challenge is the fast alignment of whole genomes.

Dynamic programming is too slow for aligning two large genomes.

Heuristics such as BLAST or FASTA are not designed to perform pairwise alignments of two very
long sequences.

One very successful approach is based on identifying “maximal unique matches”, which is based on
the assumption that one expects to substrings occurring in two similar genomes.

Maximum unique matches (MUMs) are almost surely part of a good alignment of the two sequences
and so the alignment problem can be reduced to aligning the sequence in the gaps between the MUMs.



196 Bioinformatics I, WS’09-10, J. Fischer (script by D. Huson) February 10, 2010

Definition 12.2.2 (MUM problem) Assume we are given two sequences s, t ∈ Σ∗, and a number
L > 0. The maximal unique matches problem (MUM-problem) is to find all sequences u ∈ Σ∗ with:

• |u| ≥ L,

• u occurs exactly once in s and once in t, and

• for any character a ∈ Σ neither ua nor au occurs both in s and t.

In other words, a MUM is a sequence u that occurs precisely once in s and once in t, and is both
right maximal and left maximal with this property (meaning that ua and au both do not have the
uniqueness property, for any letter a).

For example: if

s =mostbeautifulandwildcorsica

t =greencleanandnuclearfree,

then there is only one MUM of length ≥ 3, namely

and

This problem can be solved in O(|s|+ |t|) time using a so-called generalized suffix tree:

To find all MUMs, generate the generalized suffix tree T for s%t$, where % is a “separator” with % /∈ s
and % /∈ t. Any path in T from the root to some node u that has precisely two children, one in s and
one in t, corresponds to a right maximal unique match.

To determine whether u is left maximal, too, simply check whether both preceding letters in s and t
differ.

Example

For s =aggac and t =agagcgac, construct the suffix tree for s%t$:

The node gac has precisely two leaves as childern, one representing a suffix that starts in s and the
other one that starts in t. Thus, the word gac occurs precisely once in both s and t, and is right
maximal. The word is also left-maximal as the preceding characters in s (=g) and t (=c) differ.

Note, however, that the string ag is not a MUM, since the node ag has three children.

MUMs are apparent in dotplots:



Bioinformatics I, WS’09-10, J. Fischer (script by D. Huson) February 10, 2010 197

Example



198 Bioinformatics I, WS’09-10, J. Fischer (script by D. Huson) February 10, 2010

Example

12.2.5 Applications

Applications of MUMs in sequence analysis:

• Detection of large-scale inversions in bacterial genomes

• Detection of whole-genome duplications, for example in the genome of Arabidopsis thaliana.

• Comparison of different assemblies of the same genome at different stages of sequencing and
finishing.

• Comparison of assemblies of the same data using different assembly algorithms.

12.2.6 Detecting Repeats

A puzzling observation in the early days of molecular biology was that genome size does not correlate
well with “organismal complexity”. For example, Homo sapiens has a genome that is 200 times as
large as that of the yeast S. cerevisiae, but 100 times as small as that of Amoeba dubia.

This so-called C-value paradox was largely resolved with the recognition that many genomes consist
of a large amount of repetitive sequence.



Bioinformatics I, WS’09-10, J. Fischer (script by D. Huson) February 10, 2010 199

Repeats in human

(Nature, vol. 409, pg. 880, 15. Feb 2000)

12.2.7 Repeats

A PubMed query for

(repeat OR repetitive) AND (protein OR nucleotide sequence)

on May 13, 2006 produced the following results:

• 62017 hits without limits to specific fields

• 18472 hits when restricting to title/abstract

• 1170 hits when restricting to title

Keywords associated with the hits:

imprinting / RNA editing / diseases / repair / genome organization / viruses /
protein families

One can distinguish between

• local, small-scale repeats with “known” function or origin,

• simple repeats, local and interspersed, with “less known” function, and

• complex interspersed repeats with “unknown” function.

Examples of local repeats are:

• palindromic sequences (regulation of DNA transcription), eg. restriction enzyme recognition
sequences,

• inverted repeats flanking transposons (orientation),



200 Bioinformatics I, WS’09-10, J. Fischer (script by D. Huson) February 10, 2010

• repeats in viruses ,

• non-coding RNAs such as rRNAs and tRNAs (must be produced in large copy numbers),

• protein family members (eg. globins),

• clustered genes (eg. histones), and

• motifs and domains of proteins.

Examples of simple repeats are:

• often seen as tandem repeats: eg. TTAGGG up to several copies at the end of every human
chromosome,

• simple tandem repeats of length 3 nucleotides are linked to certain diseases (Huntington, etc.),
and

• satellite DNA (forensic applications).

Examples of interspersed repeats are:

• SINEs - Short Interspersed Nuclear sEquences (Alu repeats, MIRs),

• LINEs, and

• LTR elements.

12.2.8 Maximum Repeats

Definition 12.2.3 (Repeat) Assume we are given a sequence t = t1t2 . . . tn.

Let a substring t[i, j] := ti . . . tj be represented by the pair (i, j). A pair R = (l, r) of different substrings
l = (i, j) and r = (i′, j′) of t is called a repeat, if i < i′ and ti . . . tj = ti′ . . . tj′. We call l and r the
left and right instance of the repeat R, respectively.

t  ... tji t  ... ti’ j’

i j i’ j’

=t

Definition 12.2.4 (Maximal repeat) A repeat R = ((i, j), (i′, j′)) is called left maximal, if i = 1
or ti−1 6= ti′−1, and right maximal, if j′ = n or tj+1 6= tj′+1, and maximal, if it is both left and right
maximal.

t  ... tji t  ... ti’ j’

i j i’ j’

=t
a b c d

maximum ⇔ a 6= c and b 6= d

Note that the definition allows for overlapping repeats.



Bioinformatics I, WS’09-10, J. Fischer (script by D. Huson) February 10, 2010 201

Example

The string
1 2 3 4 5 6 7 8 9 10
g a g c t c g a g c contains the following repeats of length ≥ 2:

((1, 4), (7, 10)) gagc ⇒ maximal

((1, 3), (7, 9)) gag ⇒ left maximal
((2, 4), (8, 10)) agc ⇒ right maximal
((1, 2), (7, 8)) ga ⇒ left maximal
((2, 3), (8, 9)) ag
((3, 4), (9, 10)) gc ⇒ right maximal

Computing all Maximum Repeats

We will discuss how to compute all maximal repeats for a string t of length n. Generally we also want
to permit a prefix or a suffix of t to be part of a maximal repeat. To model this we simply add a
character to the start of t and one to the last of t that do no occur elsewhere in t, e.g.:

1 2 3 4 5 6 7 8 9 10 11 12 13
t = x g g c g c y g c g c c z

Let ST (T ) be the suffix tree for t. A connection between suffix trees and maximal repeats is stated
in the following

Lemma 12.2.5 Let ST (T ) be a suffix tree for string t. If a string r is a maximal repeat in t, then r
is the label of an internal node r in ST (T ) .

The following is maybe a bit surprising

Theorem 12.2.6 There are at most n maximal repeated strings in any string of length n.

Proof: Since ST (T ) has n leaves, it has at most n internal nodes. Thus the theorem follows imme-
diately from the preceding lemma. �

Thus because of the theorem above we will need only to look at internal nodes, but which specific
internal nodes correspond to maximal repeats? The following algorithm will answer this question.

From now on we can ignore all leaf edges from the root (why?).

The algorithm proceeds in two phases:

In the first phase, every leaf node v of ST (T ) is annotated by (a, i), where i denotes the position of
the suffix v = ti . . . tn associated with v and a = ti−1 is the letter that occurs immediately before the
suffix.

Example:

Partial suffix tree for
1 2 3 4 5 6 7 8 9 10 11 12 13

t = x g g c g c y g c g c c z :

c

ygcgccz
gcz

c

ygcgccz

ygcgccz
gcgcygcgccz

g

cz

gccz

ygcgccz
cz

cz



202 Bioinformatics I, WS’09-10, J. Fischer (script by D. Huson) February 10, 2010

With leaf annotations:

c

ygcgccz
gcz

c

ygcgccz

ygcgccz
gcgcygcgccz

g

cz

gccz

ygcgccz
cz

c 10

c 12 g 11
g 9 g 4

g 6

x 2
c 5

y 8 g 3
cz

Note that a substring r can only be a maximal repeat iff its branching node r has at least two leaves
with different letters in their annotations. Thus in order to find and print those we need to combine
the leaf annotations appropriately.

For every leaf node v and c ∈ Σ we set:

A(v, c) =
{
{i}, if c = ti−1, and
∅, else,

where i is the start position of the corresponding suffix v.

In the second phase of the algorithm, we extend this annotation to all branching nodes, bottom-up:

Let w be a branching node with children v1, . . . , vh and assume we have computed A(vj , c) for all
j ∈ {1, . . . , h} and all c ∈ Σ. For each letter c ∈ Σ set:

A(w, c) :=
h⋃

j=1

A(vj , c).

Note that this is a disjoint union and A(w, c) is the set of all start positions of w in t for which
ti−1 = c.

c

ygcgccz
gcz

c

ygcgccz

ygcgccz
gcgcygcgccz

g

cz

gccz

ygcgccz
cz

c 10

c 12 g 11
g 9 g 4

g 6

x 2
c 5

y 8 g 3
cz

⇒

g 3
c 5,10
x 2
y 8

c 5,10
y 8

g 3

g 3
y 8

c

ygcgccz

ygcgccz
gcgcygcgccz

g

gc

c 10

x 2
c 5

y 8 g 3
cz

cz

((8,9),(10,11))
((3,4),(10,11)
((5,6),(8,9))
((3,4),(5,6))

((3,6),(8,11))

Reporting All Maximum Repeats

In a bottom-up traversal, for each branching node w we first determine A(w, c) for all c ∈ Σ and then
report all maximal repeats of the substring w that have length ≥ L:

Let q be the string-depth of node w, i.e., q is equal to the length of w. Then there is a maximal repeat
for w, if w has a pair of children vf and vg such that there is a letter c and a letter d, with c 6= d and
A(vf , c) 6= ∅ and A(vg, d) 6= ∅. In this case we output R((i, i + q − 1), (j, j + q − 1)) for all i that are
in A(vf , c) and j that are in A(vg, d).

The result of the algorithm for maximal repeats of length L ≥ 2 for the example is:



Bioinformatics I, WS’09-10, J. Fischer (script by D. Huson) February 10, 2010 203

g 3
c 5,10
x 2
y 8

c 5,10
y 8

g 3

g 3
y 8

c

ygcgccz

ygcgccz
gcgcygcgccz

g

gc

c 10

x 2
c 5

y 8 g 3
cz

cz

((8,9),(10,11))
((3,4),(10,11)
((5,6),(8,9))
((3,4),(5,6))

((3,6),(8,11))

The following summarizes the algorithm as pseudo code:

for each internal node w of string-depth q ≥ L do
for each pair of children vf and vg of w with vf ≺ vg do

for each letter c ∈ Σ with A(vf , c) 6= ∅ do
for each i ∈ A(vf , c) do

for each letter d ∈ Σ with d 6= c and A(vg, d) 6= ∅ do
for each j ∈ A(vg, d) do

Print ((i, i + q − 1), (j, j + q − 1))
end

Maximality of output

We need to prove that the algorithm computes all maximal repeats.

Lemma 12.2.7 The algorithm prints precisely the set of all maximal repeats in t of length ≥ L.

Proof:

1. Each right maximal repeat R is represented by an internal node in the tree.

2. Vice versa, each reported repeat R is right-maximal.

3. Each reported repeat R is left-maximal, as c 6= d in the above algorithm.

4. No maximal repeat is reported twice, as vf ≺ vg and all unions are disjoint. �

Performance analysis

The following result states that the maximal repeats algorithm is both time and space optimal.

Lemma 12.2.8 Computation of all maximal repeats of length ≥ L can be done in O(n + z) time and
O(n) space, where z is the number of maximal repeats.

Proof: The suffix tree can be built in O(n) time and space. We can annotate the tree in O(n) time
and space, if we use the fact that we only need to keep the annotation of a node until its father has
been fully processed. (Also, we maintain the sets as linked links and then each disjoint-union operation
can be done in constant time.) In the nested loop we enumerate in total all z maximal repeats in O(z)
steps. �



204 Bioinformatics I, WS’09-10, J. Fischer (script by D. Huson) February 10, 2010

12.2.9 Bioinformatics Software for Repeats

• Suffix trees: Reputer - The Repeats Computer (http://www.genomes.de/)

• RepeatMasker: Repeat detection not based on suffix trees.

RepeatMasker (http://www.repeatmasker.org/) is a program that screens DNA sequences for
interspersed repeats and low complexity DNA sequences. The output of the program is a detailed
annotation of the repeats that are present in the query sequence as well as a modified version of
the query sequence in which all the annotated repeats have been masked (default: replaced by
Ns). On average, almost 50% of a human genomic DNA sequence currently will be masked by the
program. Sequence comparisons in RepeatMasker are performed by the program cross match,
an efficient implementation of the Smith-Waterman-Gotoh algorithm.

12.3 Summary

Applications of suffix trees in bioinformatics range from the search for many queries in a large text,
the computation of minimal unique matches, MUMs, and to the detection of exact repeats.

A naive algorithm to build a suffix tree requires O(n2) time, with n being the length of the text. A
query for an exact pattern q in the tree requires O(|q|) time.

We can build a suffix tree in time that is linear in the size of the text, while the WOTD algorithm
requires O(n log n) time to build, but can be constructed lazily.


	The WOTD Algorithm
	Basic idea: Compute tree recursively
	Example
	Implementation of the suffix tree data-structure
	Lazy vs. complete evaluation
	Example
	Finding occurrences in a WOTD tree
	Properties of the WOTD-algorithm

	Applications of Suffix Trees
	Searching for exact patterns
	Finding all occurrences
	Minimal Unique Substrings
	Application: Maximum Unique Matches
	Applications
	Detecting Repeats
	Repeats
	Maximum Repeats
	Bioinformatics Software for Repeats

	Summary

